首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Xylem embolism and drought-induced stomatal closure in maize   总被引:10,自引:0,他引:10  
Cochard H 《Planta》2002,215(3):466-471
Water relations during drought and xylem vulnerability to embolism were studied on four maize ( Zea mays L.) genotypes having contrasting grain yields under drought conditions. Drought provoked a drop in xylem pressure, leaf water potential and whole-plant transpiration. Transpiration was reduced to a minimum value when xylem pressures reached ca. -1.6 MPa. This value corresponded to the threshold xylem pressure below which xylem embolism developed to a substantial degree in leaf midribs. Therefore, xylem embolism always remained low in leaf veins, even when plants exhibited clear water-stress symptoms. This suggests that stomatal closure during drought contains xylem embolism to a minimum value. Cavitation resistance was not related to grain yield under drought conditions for the four genotypes evaluated. However, it can be speculated that an increase in cavitation resistance by cultural practices or genetic selection may increase drought survival in maize.  相似文献   

2.
The effects of long-term flooding on the growth of six-month-old Actinidia chinensis Planch cv. Abbot plants and some effects on stomatal behaviour and leaf water relations were examined under controlled conditions for 28 days. Flooding caused stomatal closure and decreases in transpiration rate, xylem water potential, osmotic potential and turgor potential. Flooding also caused inhibition of the dry weight increase of leaves plus stems and of roots, chlorosis and necrosis of leaves, production of hypertrophied lenticels and the appearance of a small number of adventitious roots on the submerged portions of the stems. Rapid and partial stomatal closure by flooding may not only be due to the passive mechanical response which follows leaf dehydration, since flooded plants showed an increase in xylem water potential and osmotic potential during the first days of the experiment. The marked intolerance of Actinidia chinensis to flooding has been a serious barrier to its culture in poorly drained soils, hence careful irrigation management is required.  相似文献   

3.
Leaf water potentials below threshold values result in reduced stomatal conductance (gs). Stomatal closure at low leaf water potentials may serve to protect against cavitation of xylem. Possible control of gs by leaf water potential or hydraulic conductance was tested by drying the rooting medium in four herbaceous annual species until gs was reduced and then lowering the [CO2] to determine whether gs and transpiration rate could be increased and leaf water potential decreased and whether hydraulic conductance was reduced at the resulting lower leaf water potential. In all species, low [CO2] could reverse the stomatal closure because of drying despite further reductions in leaf water potential, and the resulting lower leaf water potentials did not result in reductions in hydraulic conductance. The relative sensitivity of gs to internal [CO2] in the leaves of dry plants of each species averaged three to four times higher than in leaves of wet plants. Two species in which gs was reputed to be insensitive to [CO2] were examined to determine whether high leaf to air water vapor pressure differences (D) resulted in increased stomatal sensitivity to [CO2]. In both species, stomatal sensitivity to [CO2] was indeed negligible at low D, but increased with D, and low [CO2] partly or fully reversed closure caused by high D. In no case did low leaf water potential or low hydraulic conductance during drying of the air or the rooting medium prevent low [CO2] from increasing gs and transpiration rate.  相似文献   

4.
The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia x nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Psisoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (P(rachis)) above -1.4 MPa and the leaf water potential (Psileaf) above -1.6 MPa. The same dependence of Eplant and gs on P(rachis) or Psileaf was always observed. This suggested that stomata were not responding to changes in Psisoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on P(rachis) and/or Psileaf. Leaf rachis was the most vulnerable organ, with a threshold P(rachis) for embolism induction of -1.4 MPa. The minimum Psileaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that P(rachis) might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress.  相似文献   

5.
In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought‐induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re‐watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re‐watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re‐watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non‐hydraulic factors influenced stomatal behaviour post drought.  相似文献   

6.
A wilty mutant of rice has impaired hydraulic conductance   总被引:1,自引:0,他引:1  
The rice CM2088 mutant is the wilty phenotype and wilts markedly under well-watered sunny conditions. The leaf water potential and epidermal (mainly stomatal) conductance of CM2088 plants decreased significantly under conditions that induced intense transpiration, as compared with those of wild-type plants, revealing that the wilty phenotype was not the result of abnormal stomatal behavior but was due to an increase in resistance to water transport. The resistance to water transport was dramatically elevated in the node and the sheath and blade of a leaf of the mutant, but not in the root or stem. The diameter of xylem vessels in the large vascular bundles of the leaf sheath and the internode tended to be small, and the numbers of vessel elements with narrowed or scalariform perforation plates in the leaf blade and sheath were greater in the mutant than in the wild type. Most xylem vessels were occluded, with air bubbles in the leaf sheath of the mutant during the midday hours under intense transpiration conditions, while no bubbles were observed in plants that were barely transpiring, revealing that the significant increase in resistance to water transport was a result of the cavitation. The additive effects of cavitation in xylem vessels and the decreased diameter and deformed plates of vessel elements might be responsible for the wilty phenotype of CM2088.  相似文献   

7.
Hydraulic conductivity ( K ) in the soil and xylem declines as water potential ( Ψ ) declines. This results in a maximum rate of steady-state transpiration ( E crit) and corresponding minimum leaf Ψ ( Ψ crit) at which K has approached zero somewhere in the soil–leaf continuum. Exceeding these limits causes water transport to cease. A model determined whether the point of hydraulic failure (where K = 0) occurred in the rhizosphere or xylem components of the continuum. Below a threshold of root:leaf area ( A R: A L), the loss of rhizosphere K limited E crit and Ψ crit. Above the threshold, loss of xylem K from cavitation was limiting. The A R: A L threshold ranged from > 40 for coarse soils and/or cavitation-resistant xylem to < 0·20 in fine soils and/or cavitation-susceptible xylem. Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species' hydraulic potential for extracting soil water, and that the more sensitive stomatal response of water birch to drought was necessary to avoid hydraulic failure. The results suggest that plants should be xylem-limited and near their A R: A L threshold. Corollary predictions are (1) within a soil type the A R: A L should increase with increasing cavitation resistance and drought tolerance, and (2) across soil types from fine to coarse the A R: A L should increase and maximum cavitation resistance should decrease.  相似文献   

8.
Embolisms decrease plant hydraulic conductance and therefore reduce the ability of the xylem to transport water to leaves provided that embolized conduits are not refilled. However, as a xylem conduit is filled with gas during cavitation, water is freed to the transpiration stream and this transiently increases xylem water potential. This capacitive effect of embolism formation on plant function has not been explicitly quantified in the past. A dynamic model is presented that models xylem water potential, xylem sap flow and cavitation, taking into account both the decreasing hydraulic conductance and the water release effect of xylem embolism. The significance of the capacitive effect increases in relation to the decreasing hydraulic conductance effect when transpiration rate is low in relation to the total amount of water in xylem conduits. This ratio is typically large in large trees and during drought.  相似文献   

9.
The mechanisms regulating stomatal response following exposure to low (5°C) soil temperature were investigated in aspen ( Populus tremuloides Michx.) seedlings. Low soil temperature reduced stomatal conductance within 4 h, but did not alter shoot xylem pressure potential within 24 h. The xylem sap composition was altered and its pH increased from 6.5 to 7.1 within the initial 4 h of the low temperature treatment. However, the increase in abscisic acid (ABA) concentration in xylem sap was observed later, after 8 h of treatment. These changes were accompanied by a reduction in the electrical conductivity and an increase in the osmotic potential of the xylem sap. The timing of physiological responses to low soil temperature suggests that the rapid pH change of the xylem sap and accompanying changes in ion concentration were the initial factors which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. When leaf discs were exposed to xylem sap extracted from low soil temperature-treated plants, stomatal aperture was negatively correlated with ABA and positively correlated with K+ concentrations of the xylem sap. The stomatal opening in the leaf discs linearly increased in response to exogenous KCl concentrations when K+ concentrations were in the similar range to those detected in the xylem sap. The lowest concentration of exogenous ABA to induce stomatal closure was several-fold higher compared with the concentration present in the xylem sap.  相似文献   

10.
Hydroponic-grown seedlings of aspen (Populus tremuloides Michx.) were used to investigate how low root temperatures (5°C) affect stomatal conductance and water relations. An isohydric manner of the stomatal behaviour was found with the seedlings when their roots were subjected to the low temperature. Stomatal conductance rapidly and dramatically reduced in response to the low root temperature, while the xylem water potential did not significantly alter. Under the low root temperature, pH value of the xylem sap increased from 6.15 to 6.72 within the initial 4 h, while abscisic acid (ABA) concentration increased by the eighth hour of treatment. K+ concentration of the xylem sap significantly decreased within the 8th h and then reversed by the 24th h. The ion change was accompanied by a decrease and then an increase in the electrical conductivity, and an increase and then a decrease in the osmotic potential. The tempo of physiological responses to the low root temperature suggests that the rapid pH change of the xylem sap was the initial factor which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. Xylem sap from the seedlings subjected low root temperature affected stomatal aperture on leaf discs when they were floated on the sap solution. The stomatal aperture correlated (P = 0.006) with the changed pattern of [K+] in the sap while the range of pH or ABA found in the xylem sap did not influence stomatal aperture of leaf discs in solution. The effect of xylem sap on stomatal aperture on leaf discs was different from on stomatal conductance in the intact seedlings. Comparison was made with previous study with the soil-grown seedlings.  相似文献   

11.
The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress.  相似文献   

12.
Seedling shrubs in the Mediterranean semi-arid climate are subjected to intense droughts during summer. Thus, seedlings often surpass their limits of tolerance to water stress, resulting in the loss of hydraulic conductivity due to xylem cavitation. The response in terms of stomatal conductance, vulnerability to cavitation, leaf dieback, and survival were analysed in two co-occurring seedlings of mastic tree (Pistacia lentiscus L.) and kermes oak (Quercus coccifera L.) during an intense drought period. Both species reacted to drought with steep decreases in stomatal conductance before the critical water potential brought about the onset of cavitation events. Q. coccifera showed wider safety margins for avoiding runaway embolism than P. lentiscus and these differences could be related to the particular drought strategy displayed by each species: water saver or water spender. The limits for survival, resprout capacity and leaf dieback were also analysed in terms of loss of conductivity. By contrast with previous studies, the species showing higher seedling survival in the presence of drought also showed higher susceptibility to cavitation and operated with a lower safety margin for cavitation. Both species showed a leaf specific conductivity (LSC) threshold below which leaf biomass had to be regulated to avoid runaway embolism. However, each species displayed a different type of response: P. lentiscus conserved total leaf area up to 100% loss of LSC, whereas Q. coccifera continuously adjusted leaf biomass throughout the drought period in order to maintain the LSC very close to the maximum values recorded without loss of conductivity. Both species maintained the capacity for survival until the loss of conductivity was very nearly 100%.  相似文献   

13.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

14.
Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near‐isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (kpetiole) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum kpetiole and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLgs) under water stress was almost linearly correlated with corresponding percentage loss of kpetiole (PLC), while in MP PLgs was less influenced by PLC. Our results suggest that V. vinifera near‐isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of kpetiole, and that the coordination of these traits leads to their different stomatal responses under water stress conditions.  相似文献   

15.
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.  相似文献   

16.
Changes in the malate and mannitol composition of ash leaf (Fraxinus excelsior L.) xylem sap were studied in response to water deficit. Xylem sap was collected by the pressure method from the petiole of leaves sampled on irrigated and non-irrigated ash seedlings. As the leaf water potential decreased from -0.3 to -3.0 MPa, there was a significant increase in malate and mannitol xylem concentrations, and a concomitant decrease in maximal stomatal conductance. The functional significance of the increased malate and mannitol concentrations was investigated by using a transpiratory bioassay with mature detached leaves which exhibited, for stomatal conductance, the typical pattern showed by expanded leaves during dark/light transitions. Supplying detached leaves with mannitol in a range of concentrations found in the xylem sap had no effect on stomatal movements, but malate, for concentrations between 0.5 and 3 mM, was effective in preventing stomatal opening. The ability of malate to inhibit stomatal opening appeared to be rather non-specific. Two structural malate analogues, citrate and aspartate or an unrelated anion, shikimate, also inhibited this process. Given the drought-induced increase in xylem malate concentrations, and the fact that the range of malate levels required to close stomata was very similar to that of the concentrations found in the xylem sap, it has been hypothesized that malate is involved in the stomatal closure of ash leaves under drying conditions.Key words: Fraxinus excelsior: L., malate, mannitol, xylem sap, stomata, water deficit.   相似文献   

17.
The impact of water deficit on stomatal conductance (g(s)), petiole hydraulic conductance (K(petiole)), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential (Ψ(x)) of -0.95?MPa, and up to 90% loss of conductivity at a Ψ(x) of -1.5?MPa. K(petiole) described a daily cycle, decreasing during the day as water stress and evapotranspiration increased, then rising again in the early evening up to the previous morning's K(petiole) levels. In water-stressed vines, PLC increased sharply during the daytime and reached maximum values (70-90%) in the middle of the afternoon. Embolism repair occurred in petioles from the end of the day through the night. Indeed, PLC decreased in darkness in water-stressed vines. PLC variation in irrigated plants showed the same tendency, but with a smaller amplitude. The Chasselas cultivar appears to develop hydraulic segmentation, in which petiole cavitation plays an important role as a 'hydraulic fuse', thereby limiting leaf transpiration and the propagation of embolism and preserving the integrity of other organs (shoots and roots) during water stress. In the present study, progressive stomatal closure responded to a decrease in K(petiole) and an increase in cavitation events. Almost total closure of stomata (90%) was measured when PLC in petioles reached >90%.  相似文献   

18.
This paper analyzes the effect of the canopy age of Guiera senegalensis J.F. Gmel on water regulation processes and adaptative strategy to drought over a period of 2 years. The species is widespread in the agricultural Sahel. Before sowing, farmers cut back the shrubs to limit competition with crops. The stumps resprout after the millet harvest. Leaf water potential and stomatal conductance were measured in two fallows and in the two adjacent cultivated fields. Leaf transpiration rate and soil-to-leaf hydraulic conductance were deduced. The decrease in both stomatal and plant hydraulic conductance caused by seasonal drought was greater in mature shrubs than in current year resprouts. The decrease in predawn and midday leaf water potentials in response to seasonal drought was isohydrodynamic, and it was greater in mature shrubs, suggesting that current year resprouts are under less stress. In resprouts, the leaf transpiration rate stopped increasing beyond a hydraulic conductance threshold of 0.05 mol. m?2 s?1 MPa?1. Vulnerability to cavitation was determined on segments of stems in the laboratory. The leaf water potential value at which stomatal closure occurred was ?2.99 ± 0.68 MPa, which corresponded to a 30 % loss in xylem conductivity. Thanks to its positive safety margin of 0.6 MPa, G. senegalensis can survive above this value. The observed strategy places G. senegalensis among the non-extreme xeric plants, leading us to suppose that this species will be vulnerable to the expected increase in regional drought.  相似文献   

19.
Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6–7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of −0.8 MPa, whereas mesophyll resistance started to increase at about −1.4 MPa. Decreasing xylem water potentials increased the CO2 compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.  相似文献   

20.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号