首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphoinositide turnover was investigated in adipocytes from fed and 48 hour fasted rats. Insulin stimulated phosphoinositide synthesis both in adipocytes from fed and fasted rats. Fasting enhanced this effect of insulin 2-fold. Hydrolysis of phosphoinositides to inositol phosphates was not activated by insulin, neither transient after 2 minutes nor after 60 minutes stimulation. Under similar conditions, alpha 1-adrenergic receptor stimulation induced a pronounced inositol phosphate production. Thus, it is suggested that phosphoinositide hydrolysis is not involved in insulin action. The alpha 1-adrenergic effect was similar in adipocytes from fed and fasting rats.  相似文献   

2.
Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3-14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a Vmax of 48 pmol/micrograms DNA per h in normal cells and 120 pmol/micrograms DNA per h in cells from diabetic rats, with no change in the Km (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.  相似文献   

3.
Hyperhomocysteinemia (HHCY) is a consequence of impaired methionine/cysteine metabolism and is caused by deficiency of vitamins and/or enzymes such as cystathionine beta-synthase (CBS). Although HHCY is an important and independent risk factor for cardiovascular diseases that are commonly associated with hepatic steatosis, the mechanism by which homocysteine promotes the development of fatty liver is poorly understood. CBS-deficient (CBS(-/-)) mice were previously generated by targeted deletion of the Cbs gene and exhibit pathological features similar to HHCY patients, including endothelial dysfunction and hepatic steatosis. Here we show abnormal lipid metabolism in CBS(-/-) mice. Triglyceride and nonesterified fatty acid levels were markedly elevated in CBS(-/-) mouse liver and serum. The activity of thiolase, a key enzyme in beta-oxidation of fatty acids, was significantly impaired in CBS(-/-) mouse liver. Hepatic apolipoprotein B100 levels were decreased, whereas serum apolipoprotein B100 and very low density lipoprotein levels were elevated in CBS(-/-) mice. Serum levels of cholesterol/phospholipid in high density lipoprotein fractions but not of total cholesterol/phospholipid were decreased, and the activity of lecithin-cholesterol acyltransferase was severely impaired in CBS(-/-) mice. Abnormal high density lipoprotein particles with higher mobility in polyacrylamide gel electrophoresis were observed in serum obtained from CBS(-/-) mice. Moreover, serum cholesterol/triglyceride distribution in lipoprotein fractions was altered in CBS(-/-) mice. These results suggest that hepatic steatosis in CBS(-/-) mice is caused by or associated with abnormal lipid metabolism.  相似文献   

4.
Studies of uptake and release of 64Cu, 109Cd, and 65Zn in suckling C57BL/6J male mice revealed kinetics and distributions that differed for each metal both within and among the organs analyzed, suggesting distinct, albeit overlapping, mechanisms for transport and binding of each metal. In mutants, there were tissue-specific increases in copper-binding capacity. In hemizygotes (Moblo/y) accumulation of 64Cu was increased in kidney, lung, and duodenum. In heterozygotes (Moblo/+), 64Cu content was increased in kidney, with a smaller increase in lung, and no change in duodenal Cu. Decreased 64Cu accumulation was seen in liver in both hemi- and heterozygotes. In contrast, 64Zn and 109Cd accumulation in organs of heterozygote mice was not significantly distinguishable from normal. In skin and connective tissues there is excessive accumulation of 64Cu in Moblo/+ and Moblo/y, no abnormality in heterozygote 65Zn accumulation, but a clear decrease in heterozygote 109Cd content. In both mutant kidney and liver, there was an aberrant subcellular distribution of 64Cu, with the major fraction of sequestered 64Cu in the cytosol. Our studies establish that in spite of the ubiquity of metallothioneins and the structural similarities of those that have been characterized, there is specificity and functional heterogeneity in metal binding among tissues. The aggregate data suggest that there are unique regulatory mechanisms for the metabolism  相似文献   

5.
Mink homozygous for the mutation Pro214Leu in lipoprotein lipase (LPL) had only traces of LPL activity but amounts of LPL protein in their tissues similar to those of normal mink. In normal mink, lymph chylomicrons from rats given [3H]retinol (incorporated into retinyl esters, providing a core label) and [14C]oleic acid (incorporated mainly in triglycerides (TG)) were rapidly cleared from the circulation. In the homozygous mink, clearance was much retarded. The ratio of TG to core label in plasma did not decrease and much less [14C]oleic acid appeared in plasma. Still, half of the labeled material disappeared from the circulating blood within 30;-40 min and the calculated total turnover of TG in the hypertriglyceridemic mink was almost as large as in normal mink. The core label was distributed to the same tissues in hypertriglyceridemic mink as in normal mink. Half to two-thirds of the cleared core label was in the liver. The large difference was that in the hypertriglyceridemic mink, TG label (about 40% of the total amount removed) followed the core label to the liver and there was no preferential uptake of TG over core label in adipose or muscle tissue. In normal mink, only small amounts of TG label (<10%) appeared in the liver, while most was in adipose and muscle tissues. Apolipoprotein B-48 dominated in the accumulated TG-rich lipoproteins in blood of hypertriglyceridemic mink, even in fasted animals.  相似文献   

6.
7.
The purpose of this study was to characterize the lipoprotein profile and cholesterol metabolism in Yoshida rats, a strain of inbred genetically hyperlipemic animals. For comparison, Brown Norway rats were used as control animals. Plasma cholesterol and triglycerides were higher in Yoshida as compared to Brown Norway, the elevation of cholesterol being due to a rise in HDL fraction. Triglyceride distribution among lipoproteins showed an increase in VLDL fraction. Hyperlipemia was not related to diabetes, hypothyroidism or nephropathy. Plasma triglycerides production was increased in Yoshida rats, while lipoprotein and hepatic lipases were similar in the two groups. Hypercholesterolemia was associated with a defect of lipoprotein receptor activity and with elevated HMG-CoA reductase and cholesterol 7 alpha - hydroxylase; conversely ACAT activity was lower in Yoshida as compared to Brown Norway rats. Sterol fecal excretion was comparable in the two groups and hypercholesterolemia in Yoshida rats was not associated to an increase of cholesterol saturation of the bile. We suggest that lipoprotein overproduction is the main cause for hyperlipidemia in this strain of rats.  相似文献   

8.
Polyphenols from cinnamon (CN) have been described recently as insulin sensitizers and antioxidants but their effects on the glucose/insulin system in vivo have not been totally investigated. The aim of this study was to determine the effects of CN on insulin resistance and body composition, using an animal model of the metabolic syndrome, the high fat/high fructose (HF/HF) fed rat. Four groups of 22 male Wistar rats were fed for 12 weeks with:
(i)
(HF/HF) diet to induce insulin resistance,
(ii)
HF/HF diet containing 20 g cinnamon/kg of diet (HF/HF + CN),
(iii)
Control diet (C) and
(iv)
Control diet containing 20 g cinnamon/kg of diet (C + CN).
Data from hyperinsulinemic euglycemic clamps showed a significant decrease of the glucose infusion rates in rats fed the HF/HF diet. Addition of cinnamon to the HF/HF diet increased the glucose infusion rates to those of the control rats. The HF/HF diet induced a reduction in pancreas weight which was prevented in HF/HF + CN group (p < 0.01). Mesenteric white fat accumulation was observed in HF/HF rats vs. control rats (p < 0.01). This deleterious effect was alleviated when cinnamon was added to the diet. In summary, these results suggest that in animals fed a high fat/high fructose diet to induce insulin resistance, CN alters body composition in association with improved insulin sensitivity.  相似文献   

9.
10.
11.
The fetal alcohol syndrome in mice: an animal model   总被引:3,自引:0,他引:3  
G F Chernoff 《Teratology》1977,15(3):223-229
CBA and C3H female mice were maintained on liquid diets--Metrecal plus ethanol--containing 15-35% ethanol-derived calories. These diets, which resulted in alcohol blood levels of 73-398 mg/100 ml blood in nonpregnant females, were the sole sustenance for the females for at least 30 days before and throughout gestation. Females were killed on day 18 of gestation and offspring examined for skeletal and soft tissue anomalies. Prenatal death and maldevelopment increased with the level of alcohol intake. Deficient occiput ossification, neural anomalies, and low fetal weight occurred with low ethanol diets, and cardiac and eye-lid dysmorphology with higher ethanol diets. This pattern of malformations, which exhibited both a dose-response effect and strain differences in susceptibility, indicated that chronic maternal alcoholism is embryolethal and teratogenic in mice.  相似文献   

12.
Under basal conditions (zero insulin), paraovarian adipocytes from 19-day-pregnant rats exhibited the same rates of [U-14C]glucose conversion into CO2 and total lipids as did those from age-matched virgin rats. The dose-response curves for insulin stimulation of glucose metabolism were similar in both groups: maximal response (+100% over basal values) and high sensitivity (half-maximal effect at 0.05 nM-insulin). The present results suggest that the insulin resistance in vivo that occurs during late pregnancy may involve circulating factors lost in vitro.  相似文献   

13.
PURPOSE OF REVIEW: The metabolic syndrome has been emphasized as affecting an important subset of individuals at high risk for cardiovascular disease leading the National Cholesterol Educational Program Adult Treatment Panel III in highlighting awareness of insulin-resistance syndrome. Insulin resistance is thought to be an underlying feature of the metabolic syndrome and in the last few years efforts have been performed to assess the effects of ectopic fat accumulation on whole-body glucose metabolism and on the pathogenesis of insulin resistance. RECENT FINDINGS: Abnormality of fatty acid metabolism and ectopic fat accumulation within skeletal muscle has been measured using the traditional biopsy technique but this field of investigation has been exploited considerably more recently thanks to the use of non-invasive H-magnetic resonance spectroscopy. Initial data supported the hypothesis that a strong causal relationship between increased intra-myocellular lipid (IMCL) content and whole-body insulin resistance might exist. Indeed, experimental evidence is still controversial especially when the modulation of the IMCL content is induced by physical exercise and nutritional interventions. SUMMARY: It has been suggested recently that the flux of muscular fatty acids as a source of oxidative energy may play a pivotal role into the development of the abnormalities of muscle and whole-body energy metabolism, potentially as the basis of the pathogenesis of obesity, the metabolic syndrome and type 2 diabetes.  相似文献   

14.
3-Hydroxy-4-oxobutyl-1-phosphonate, the phosphonic acid analogue of glyceraldehyde 3-phosphate, enters Escherichia coli via the glycerol 3-phosphate transport system. There is no differential effect upon the accumulation of deoxyribonucleic acid, ribonucleic acid, or phosphoglycerides, although the accumulation of proteins was less effected. Examination of the phospholipids revealed that phosphatidylglycerol accumulation was most severely inhibited and cardiolipin accumulation was least affected. Concentrations of glyceraldehyde 3-phosphate and its phosphonic acid analogue that markedly inhibit macromolecular and phosphoglyceride biosynthesis have no effect upon the intracellular nucleoside triphosphate pool size. The phosphonate is a competitive inhibitor of sn-glycerol 3-phosphate in reactions catalyzed by acyl coenzyme A:sn-glycerol-3-phosphate acyltransferase and CDP-diacylglycerol:sn-glycerol-3-phosphate phosphatidyltransferase. A Km mutant for the former enzyme was susceptible to the phosphonate. The phosphonate did not affect acyl coenzyme A:lysophosphatidate acyltransferase activity. Studies with mutant strains ruled out the aerobic glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate synthase, and fructose-1,6-biphosphate aldolase as the primary sites of action.  相似文献   

15.
3-Hydroxy-4-oxobutyl-1-phosphonate, the phoshonic acid analogue of glyceraldehyde 3-phosphate, enters Escherichia coli via the glycerol 3-phosphate transport system. There is no differential effect upon the accumulation of deoxyribonucleic acid, ribonucleic acid, or phosphoglycerides, although the accumulation of proteins was less effected. Examination of the phospholipids revealed that phosphatidylglycerol accumulation was most severely inhibited and cardiolipin accumulation was least affected. Concentrations of glyceraldehyde 3-phosphate and its phosphonic acid analogue that markedly inhibit macromolecular and phosphoglyceride biosynthesis have no effect upon the intracellular nucleoside triphosphate pool size. The phosphonate is a competitive inhibitor of sn-glycerol 3-phosphate in reactions catalyzed by acyl coenzyme A:sn-glycerol-3-phosphate acyltransferase and CDP-diacylglycerol:sn-glycerol-3-phosphate phosphatidyltransferase. A Km mutant for the former enzyme was susceptible to the phosphansferase activity. Studies with mutant strains ruled out the aerobic glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate synthase, and fructose-1,6-biphosphate aldolase as the primary sites of action.  相似文献   

16.
Epidemiological studies have established a relationship between early growth restriction and subsequent development of type 2 diabetes. Animal studies have shown that offspring of protein-restricted rats undergo a greater age-related loss of glucose tolerance than controls. The aim of this study was to investigate the possibility that this deterioration of glucose tolerance is associated with changes in adipocyte insulin action. Adipocytes from low-protein offspring had higher basal levels of glucose uptake than controls. Insulin stimulated glucose uptake into control adipocytes but had little effect on low-protein adipocytes. Both groups had similar levels of basal and isoproterenol-stimulated lipolysis. Insulin inhibited lipolysis in control adipocytes but had a reduced effect on low-protein adipocytes. These changes in insulin action were not related to altered expression of insulin receptors or insulin receptor tyrosine phosphorylation; however, they were associated with reduced phosphatidylinositol 3-kinase and protein kinase B activation. These results demonstrate that reduced glucose tolerance observed in late adult life after early growth restriction is associated with adipocyte insulin resistance.  相似文献   

17.
Using selected conditions, the appropriate collagenase, albumin and cell treatment, a preparation of isolated adipocytes was developed with no extracellular insulin degrading activity. Cell mediated insulin degradation rates were 0.68%±0.05%/100 000 cell/h using trichloracetic acid precipitability as a measure. Chloroquine (CQ) increased cell-associated radioactivity and decreased degradation while dansylcadaverine (DC), PCMBS and bacitracin (BAC) decreased degradation with no effect on binding. Extraction and chromatography of the cell-associated radioactivity showed 3 peaks, a large molecular weight peak, a small molecular weight peak and an insulin-sized peak. CQ, DC and BAC all decreased the small molecular weight peak while CQ and DC also increased the peak of large molecular weight radioactivity. Cell mediated insulin degradation in the presence of combinations of inhibitors suggested two pathways in adipocytes, one affected by inhibitors of the insulin degrading enzyme (IDE) (bacitracin and PCMBS) and the other altered by cell processing inhibitors (DC, CQ and phenylarsenoxide). Chloroquine altered the pattern of the insulin-sized cell-associated HPLC assayed degradation products, further supporting two pathways of degradation; one a chloroquine-sensitive and one a chloroquine-insensitive pathway.  相似文献   

18.
Metabolic profiling studies have highlighted increases in the plasma free fatty acid (FFA) and branched-chain amino acid (BCAA) concentrations, which are hallmarks of the obese and insulin-resistant phenotype. However, little is known about how the increase of the BCAA concentration modifies the metabolic fate of FFA, and vice versa, in adipocytes. Therefore, we incubated differentiated 3T3-L1 adipocytes or primary adipocytes from rats fed a control or a high-fat diet with: (1) 0, 250, 500 and 1000 μM of leucine and determined the oxidation and incorporation of [1-14C]-palmitate into lipids or proteins or (2) 0, 250, 500 or 1000 μM of palmitate and evaluated the oxidation and incorporation of [U-14C]-leucine into lipids or proteins. Leucine decreased palmitate oxidation and increased its incorporation into the lipid fraction in adipocytes; the latter was reduced in adipocytes from obese rats. However, palmitate increased leucine oxidation in adipocytes as well as reduced leucine incorporation into the protein and lipid fractions in adipocytes from obese rats. These results demonstrate that leucine modifies the metabolic fate of palmitate, and vice versa, in adipocytes and that the metabolic interaction between leucine and palmitate catabolism is altered in adipocytes from obese rats.  相似文献   

19.
The effect of oral Zn treatment was studied in the liver and kidneys of 26 male Long-Evans Cinnamon (LEC) rats (mutant animals, 5 weeks old) in relation to both the interaction between Zn and Cu and the localisation and concentration of metallothionein (MT). Rats receiving 80 mg zinc acetate daily by gavage and control rats receiving no treatment were killed after 1 or 2 weeks. By immunohistochemical and analytical chemical techniques we revealed that treated rats had higher levels of MT in the hepatic and renal cells compared to untreated ones. Tissue Zn concentrations were significantly higher in treated rats compared to untreated whereas Cu concentrations decreased in the liver and kidneys as indicated by analytical chemical analyses. MT levels also decreased with treatment period. A histochemical procedure, obtained using autofluorescence of Cu-metallothioneins, confirms these findings: after 2 weeks, the signal decreased in both the liver and kidney sections. This gives a greater understanding of the mechanism of Cu metabolism in the two tissues considered. These results suggest that Zn acts both to compete for absorption on the luminal side of the intestinal epithelium and to induce the synthesis of MT.  相似文献   

20.
Rabbits were fed low fat cholesterol-free diets containing casein as the source of protein (27% w/w). One group of 6 animals was supplemented with fish oil (Max Epa; 0.5 ml oil/kg body weight) and compared with 6 animals which were supplemented with a mixture of corn, palm and soybean oils (1:1:1 v/v). VLDL triacylglycerol concentrations were lower in those supplemented with Max Epa. LDL cholesterol and the kinetics of LDL-apo B were unaffected. The results indicate that in endogenously hypercholesterolaemic animals with low triacyglycerol concentrations, casein and possibly other animal proteins, override any effect of this dose of fish oil on LDL metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号