首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.  相似文献   

2.
Metabolic syndrome is a combination of medical disorders that increases the risk of developing cardiovascular disease and diabetes. Constitutive overexpression of 11β-HSD1 in adipose tissue in mice leads to metabolic syndrome. In the process of generating transgenic mice overexpressing 11β-HSD1 in an inducible manner, we found a metabolic syndrome phenotype in control, transgenic mice, expressing the reverse tetracycline-transactivator (rtTA) in adipose tissue. The control mice exhibited all four sequelae of metabolic syndrome (visceral obesity, insulin resistance, dyslipidemia, and hypertension), a pro-inflammatory state and marked hepatic steatosis. Gene expression profiling of the adipose tissue, muscle and liver of these mice revealed changes in expression of genes involved in lipid metabolism, insulin resistance, and inflammation. Transient transfection of rtTA, but not tTS, into 3T3-L1 cells resulted in lipid accumulation. We conclude that expression of rtTA in adipose tissue causes metabolic syndrome in mice.  相似文献   

3.
Endogenous glucocorticoid (GC) activation is regulated by the intracellular GC-activating and -inactivating enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD)1 and 11β-HSD2, respectively, that catalyze interconversion of inert cortisone and its bioactive metabolite cortisol. Because endogenous GCs are critically implicated in suppressing the asthmatic state, this study examined the roles of the 11β-HSD enzymes in regulating GC activation and bronchoprotection during proasthmatic stimulation. Airway hyperresponsiveness to methacholine and inflammation were assessed in rabbits following inhalation of the proasthmatic/proinflammatory cytokine IL-13 with and without pretreatment with the 11β-HSD inhibitor carbenoxolone (CBX). Additionally, IL-13-induced changes in 11β-HSD isozyme expression and GC metabolism were examined in epithelium-intact and -denuded tracheal segments and peripheral lung tissues. Finally, the effects of pretreatment with CBX or 11β-HSD2-targeted siRNAs were investigated with respect to cortisol prevention of IL-13-induced airway constrictor hyperresponsiveness and eotaxin-3 production by airway epithelial cells. IL-13-exposed rabbits exhibited airway hyperresponsiveness, inflammation, and elevated bronchoalveolar lung fluid levels of eotaxin-3. These responses were inhibited by pretreatment with CBX, suggesting a permissive proasthmatic role for 11β-HSD2. Supporting this concept, extended studies demonstrated that 1) IL-13-treated tracheal epithelium and peripheral lung tissues exhibit upregulated 11β-HSD2 activity, 2) the latter impairs cortisone-induced cortisol accumulation and the ability of administered cortisol to prevent both IL-13-induced heightened airway contractility and eotaxin-3 release from epithelial cells, and 3) these proasthmatic responses are prevented by cortisol administration in the presence of 11β-HSD2 inhibition. Collectively, these data demonstrate that the proasthmatic effects of IL-13 are enabled by impaired endogenous GC activation in the lung that is attributed to upregulation of 11β-HSD2 in the pulmonary epithelium.  相似文献   

4.
Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.  相似文献   

5.
Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11β-HSD1, 11β-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet. In particular, level variation of 11β-HSD2, whose protein expression was detected by Western blotting, may represent a novel mechanism that may affect WAT glucocorticoid sensitivity. Data suggest that maternal undernutrition differently programs the adult offspring WAT gene expression profile that may predispose for altered fat deposition.  相似文献   

6.
Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

7.
We have examined the metabolic effects of daily administration of carbenoxolone (CBX), a naturally occurring 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibitor, in mice with high fat diet-induced insulin resistance and obesity. Eight-week-old male Swiss TO mice placed on a synthetic high fat diet received daily intraperitoneal injections of either saline vehicle or CBX over a 16-day period. Daily administration of CBX had no effect on food intake, but significantly lowered body weight (1.1- to 1.2-fold) compared to saline-treated controls. Non-fasting plasma glucose levels were significantly decreased (1.6-fold) by CBX treatment on day 4 and remained lower throughout the treatment period. Circulating plasma corticosterone levels were not significantly altered by CBX treatment. Plasma glucose concentrations of CBX-treated mice were significantly reduced (1.4-fold) following an intraperitoneal glucose load compared with saline controls. Similarly, after 16-day treatment with CBX, exogenous insulin evoked a significantly greater reduction in glucose concentrations (1.4- to 1.8-fold). 11beta-HSD1 gene expression was significantly down-regulated in liver, whereas glucocorticoid receptor gene expression was increased in both liver and adipose tissue following CBX treatment. The reduced body weight and improved metabolic control in mice with high fat diet-induced obesity upon daily CBX administration highlights the potential value of selective 11beta-HSD1 inhibition as a new route for the treatment of type 2 diabetes and obesity.  相似文献   

8.
Patients with glucocorticoid (GC) excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc) and omental (om) adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM) of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.  相似文献   

9.
We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets — LSO, FO2.5, FO12.5 or FO25 — containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.  相似文献   

10.
An excessive consumption of high-fat diet can lead to the alterations of glucose and lipid metabolism, impaired insulin signaling and increased ectopic lipid accumulation resulting in renal lipotoxicity and subsequent renal dysfunction. Atorvastatin is a lipid-lowering drug in clinical treatment. Several studies have reported that atorvastatin has several significant pleiotropic effects including anti-inflammatory, antioxidant, and anti-apoptotic effects. However, the effects of atorvastatin on metabolic disturbance and renal lipotoxicity in obesity are not fully understood. In this study, obesity in rat was developed by high-fat diet (HFD) feeding for 16 weeks. After that, the HFD-fed rats were received either a vehicle (HF), atorvastatin (HFA) or vildagliptin (HFVIL), by oral gavage for 4 weeks. We found that HF rats showed insulin resistance, visceral fat expansion and renal lipid accumulation. Impaired renal function and renal organic anion transporter 3 (Oat3) function and expression were also observed in HF rats. The marked increases in MDA level, renal injury and NF-κB, TGF-β, NOX-4, PKC-α expression were demonstrated in HF rats. Atorvastatin or vildagliptin treatment attenuated insulin resistance and renal lipid accumulation-induced lipotoxicity in HFA and HFVIL rats. Moreover, the proteins involved in renal inflammation, fibrosis, oxidative stress and apoptosis were attenuated leading to improved renal Oat3 function and renal function in the treated groups. Interestingly, atorvastatin showed higher efficacy than vildagliptin in improving insulin resistance, renal lipid accumulation and in exerting renoprotective effects in obesity-induced renal injury and impaired renal Oat3 function.  相似文献   

11.
12.
13.
14.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor gamma2 (PPARgamma2), and CCAT/enhancer-binding protein alpha (C/EBPalpha). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARgamma2, and C/EBPalpha in the visceral fat tissue of mice.  相似文献   

15.
PurposeDiets rich in fat and energy are associated with metabolic syndrome (MS). Increased body iron stores have been recognized as a feature of MS. High-fat diets (HFs), excess iron loading and MS are closely associated, but the mechanism linking them has not been clearly defined. We investigated the interaction between dietary fat and dietary Fe in the context of glucose and lipid metabolism in the body.MethodsC57BL6/J mice were divided into four groups and fed the modified AIN-93G low-fat diet (LF) and HF with adequate or excess Fe for 7 weeks. The Fe contents were increased by adding carbonyl iron (2% of diet weight) (LF+Fe and HF+Fe).ResultsHigh iron levels increased blood glucose levels but decreased high-density lipoprotein cholesterol levels. The HF group showed increases in plasma levels of glucose and insulin and insulin resistance. HF+Fe mice showed greater changes. Representative indices of iron status, such hepatic and plasma Fe levels, were not altered further by the HF. However, both the HF and excess iron loading changed the hepatic expression of hepcidin and ferroportin. The LF+Fe, HF and HF+Fe groups showed greater hepatic fat accumulation compared with the LF group. These changes were paralleled by alterations in the levels of enzymes related to hepatic gluconeogenesis and lipid synthesis, which could be due to increases in mitochondrial dysfunction and oxidative stress.ConclusionsHigh-fat diets and iron overload are associated with insulin resistance, modified hepatic lipid and iron metabolism and increased mitochondrial dysfunction and oxidative stress.  相似文献   

16.
Polycystic ovary syndrome (PCOS) is characterized by insulin resistance (IR) and central obesity. The impact of adipose tissue cortisol reactivation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) on markers of obesity and IR was assessed in PCOS patients. Eighty-five PCOS patients and 43 controls were enrolled for subcutaneous adipose tissue biopsy; 25/85 patients and 29/43 controls underwent also visceral adipose tissue biopsy. HSD11B1 gene expression and expression of lipid metabolism genes were measured in subcutaneous and visceral adipose tissues. Anthropometric and biochemical markers of IR and PCOS were also assessed. HSD11B1 expression in visceral and subcutaneous adipose tissue was increased in PCOS patients compared to controls (p<0.05). After BMI adjustment, the difference was no longer significant. In PCOS patients, visceral HSD11B1 expression correlated positively with waist circumference (p=0.001), BMI (p=0.002), plasma insulin (p<0.05), systolic blood pressure (p=0.003), and lipoprotein lipase (LPL), hormone-sensitive lipase (LIPE) and peroxisome-proliferator activated receptor γ gene expression. Subcutaneous HSD11B1 expression correlated positively with BMI, waist circumference (p<0.001 for both) and HOMA-IR (p=0.003), and negatively with LPL, LIPE, adiponectin and glucose transporter GLUT4 gene expression. HSD11B1 expression in both depots showed a negative correlation with plasma HDL-cholesterol (p<0.03) and a positive one with C-reactive protein (p<0.001). In multiple regression analysis, HSD11B1 expression in visceral adipose tissue was most prominently associated with waist circumference, and that in subcutaneous adipose tissue with BMI (p<0.001 for both). Our results show that PCOS is not associated with increased HSD11B1 expression once adiposity is controlled for. Increased expression of this gene correlates with markers of adiposity and predicts IR and an unfavorable metabolic profile, independently of PCOS.  相似文献   

17.
Differential gene expression between visceral and subcutaneous fat depots.   总被引:5,自引:0,他引:5  
Abdominal obesity has been linked to the development of insulin resistance and Type 2 diabetes mellitus (DM2). By surgical removal of visceral fat (VF) in a variety of rodent models, we prevented insulin resistance and glucose intolerance, establishing a cause-effect relationship between VF and the metabolic syndrome. To characterize the biological differences between visceral and peripheral fat depots, we obtained perirenal visceral (VF) and subcutaneous (SC) fat from 5 young rats. We extracted mRNA from the fat tissue and performed gene array hybridization using Affymetrix technology with a platform containing 9 000 genes. Out of the 1 660 genes that were expressed in fat tissue, 297 (17.9 %) genes show a two-fold or higher difference in their expression between the two tissues. We present the 20 genes whose expression is higher in VF fat (by 3 - 7 fold) and the 20 genes whose expression is higher in SC fat (by 3 - 150 fold), many of which are predominantly involved in glucose homeostasis, insulin action, and lipid metabolism. We confirmed the findings of gene array expression and quantified the changes in expression in VF of genes involved in insulin resistance (PPARgamma leptin) and its syndrome (angiotensinogen and plasminogen activating inhibitor-1, PAI-1) by real-time PCR (qRT-PCR) technology. Finally, we demonstrated increased expression of resistin in VF by around 12-fold and adiponectin by around 4-fold, peptides that were not part of the gene expression platform. These results indicate that visceral fat and subcutaneous fat are biologically distinct.  相似文献   

18.
Transgenic mice overexpressing chicken Ski (c‐Ski) have marked decrease in adipose mass with skeletal muscle hypertrophy. Recent evidence indicates a role for c‐Ski in lipogenesis and energy expenditure. In the present study, wild type (WT) and c‐Ski mice were challenged on a high‐fat (HF) diet to determine whether c‐Ski mice were resistant to diet‐induced obesity. During the HF feeding WT mice gained significantly more weight than chow‐fed animals, while c‐Ski mice were partially resistant to the effects of the HF diet on weight. Body composition analysis confirmed the decreased adipose mass in c‐Ski mice compared to WT mice. c‐Ski mice possess a similar metabolic rate and level of food consumption to WT littermates, despite lower activity levels and on chow diet show mild glucose intolerance relative to WT littermates. On HF diet, glucose tolerance surprisingly remained unchanged in c‐Ski mice, while it became worse in WT mice. Skeletal muscle of c‐Ski mice exhibit impaired insulin‐stimulated Akt phosphorylation and glucose uptake. In concordance, gene expression profiling of skeletal muscle of chow and HF‐fed mice indicated that Ski suppresses gene expression associated with insulin signaling and glucose uptake and alters gene pathways involved in myogenesis and adipogenesis. In conclusion, c‐Ski mice are partially resistant to diet‐induced obesity and display aberrant insulin signaling and glucose homeostasis which is associated with alterations in gene expression that inhibit lipogenesis and insulin signaling. These results suggest Ski plays a major role in skeletal muscle metabolism and adipogenesis and hence influences risk of obesity and diabetes.  相似文献   

19.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor γ2 (PPARγ2), and CCAT/enhancer-binding protein α (C/EBPα). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARγ2, and C/EBPα in the visceral fat tissue of mice.  相似文献   

20.
Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague–Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0–40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young male rats. These results suggest that caution may be warranted when recommending intermittent fasting, especially one-meal-per-day fasting, for people with compromised glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号