首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cell fusion between mating type plus (mt+) and minus (mt-) gametes of Chlamydomonas reinhardtii is analyzed structurally and subjected to experimental manipulation. Cell wall lysis, a necessary prelude to fusion, is shown to require flagellar agglutination between competent gametes; glutaraldehyde-fixed gametes ("corpses") of one mating type will elicit both agglutination and cell wall lysis in the opposite mating type, whereas nonagglutinating impotent (imp) mutant strains are without effect. The fusion process is mediated by a narrow fertilization tubule which extends from the mt+ gamete and establishes contact with the mt- gamete. Formation of the tubule requires the "activation" of a specialized mating structure associated with the ml+ cell membrane; activation causes microfilaments to polymerize from the mating structure into the growing fertilization tubule. Mating structure activation is shown to depend on gametic flagellar agglutination; isoagglutination mediated by the lectin concanavalin A has no effect. Gametes carrying the imp-l mt+ mutation are able to agglutinate but not fuse with mt- cells; the imp-l gametes are shown to have structurally defective mating structures that do not generate microfilaments in response to gametic agglutination.  相似文献   

3.
It has been previously shown that mild trypsinization of Chlamydomonas gametes reversibly inhibits steps of the mating process. Gametic agglutination is delayed 30–60 min, while cell wall hydrolysis and zygote formation are delayed 1–3 h. If gametes are pretreated with 5 μg/ml tunicamycin (TM) for 1 h and then trypsinized, the recovery of agglutination is blocked. These results indicate that N-glycosylated glycoproteins are involved in agglutination. Treatment of normal gametes with tunicamycin alone does not have a significant effect on agglutination and mating efficiency, suggesting that there is little or no turnover of the surface receptors before mating. Tunicamycin also interferes with cell growth and prevents the conversion of vegetative cells into gametes.  相似文献   

4.
A new study of sexual agglutination between Chlamydomonas eugametos gametes and between vis-à-vis pairs has been made using techniques that allow one to distinguish between the flagella or cell bodies of individual mating types (mt+ or mt-). It is shown that before mt+ and mt- gametes fuse in pairs, their flagella, which adhere over their whole length, are maintained in a particular conformation around the mt- cell body. In clumps of agglutinating gametes the cells are asymmetrically distributed with the mt+ gametes constituting the outer surface of the clumps with the mt- gametes on the inside. The flagella are then all directed towards the middle of the clump. This orientation of the flagella is maintained for approx. 8 min after cell fusion before the vis-à-vis pair becomes motile. At this stage, all the flagellar tips are activated. The original mt+ flagellar tips then deactivate and swimming is resumed. The original mt- flagella remain immotile and activated after cell fusion and eventually shorten by a third, but only 30 min or more after fusion. Motile vis-à-vis pairs eventually settle to the substrate when the gamete bodies fuse completely to form a zygote. Settling vis-à-vis pairs are attracted to those that have already settled, to glutaraldehyde-fixed pairs and to flagella isolated from mt- gametes. They are not chemotactically attracted, rather they are weakly agglutinated. Living vis-à-vis pairs can be shown to aggregate in rows with the cell bodies lying side by side. It is argued that the flagellar agglutination sites involved in gamete recognition are also involved in vis-à-vis pair aggregationAbbreviations mt+/- mating type plus or minus - FTA flagellar tip activation  相似文献   

5.
Successful zygote formation during yeast mating requires cell fusion of the two haploid mating partners. To ensure that cells do not lyse as they remodel their cell wall, the fusion event is both temporally and spatially regulated: the cell wall is degraded only after cell–cell contact and only in the region of cell–cell contact. To understand how cell fusion is regulated, we identified mutants defective in cell fusion based upon their defect in mating to a fus1 fus2 strain (Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Genetics 136:1287–1297). Two of these cell fusion mutants are defective in the FPS1 gene, which codes for a glycerol facilitator (Luyten, K., J. Albertyn, W.F. Skibbe, B.A. Prior, J. Ramos, J.M. Thevelein, and S. Hohmann. 1995. EMBO [Eur. Mol. Biol. Organ.] J. 14:1360–1371). To determine whether inability to maintain osmotic balance accounts for the defect in cell fusion in these mutants, we analyzed the behavior of an fps1Δ mutant with reduced intracellular glycerol levels because of a defect in the glycerol-3-phosphate dehydrogenase (GPD1) gene (Albertyn, J., S. Hohmann, J.M. Thevelein, and B.A. Prior. 1994. Mol. Cell. Biol. 14:4135– 4144): deletion of GPD1 partially suppressed the cell fusion defect of fps1 mutants. In contrast, overexpression of GPD1 exacerbated the defect. The fusion defect could also be partially suppressed by 1 M sorbitol. These observations indicate that the fusion defect of fps1 mutants results from inability to regulate osmotic balance and provide evidence that the osmotic state of the cell can regulate fusion. We have also observed that mutants expressing hyperactive protein kinase C exhibit a cell fusion defect similar to that of fps1 mutants. We propose that Pkc1p regulates cell fusion in response to osmotic disequilibrium. Unlike fps1 mutants, fus1 and fus2 mutants are not influenced by expression of GPD1 or by 1 M sorbitol. Their fusion defect is thus unlikely to result from altered osmotic balance.  相似文献   

6.
Chlamydomonas reinhardi, a haploid isogamous green alga, presents a classic case of uniparental inheritance of chloroplast genes. Since the molecular basis of this phenomenon is poorly understood, an examination of the cytology of the C. reinhardi plastid DNA was made in gametes, newly formed zygotes, maturing zygotes, and at zygote germination.The single plastid per cell of Chlamydomonas contains a small number of DNA aggregates (‘nucleoids’) which can be seen after staining with DNA-binding fluorochromes. In zygotes formed by pre-stained gametes, the fluorescing nucleoids disappear from the plastid of mating type minus (male) gamete plastids but not from the plastid of mating type plus (female) gamete plastids about 1 h after zygote formation. Subsequently, nucleoids aggregate slowly to a final average of two or three in the single plastid of the mature zygote.Quantitative microspectrofluorimetry indicates that gametes of both mating types have equal amounts of plastid DNA, and that zoospores arising from zygotes have 3.5 × as much as gametes. Assuming degradation of male plastid DNA, there must be a very major synthesis of plastid DNA between zygote formation and zoospore release when zygotes produce the typical 8–16 zoospores. That synthesis appears to occur at germination, where there is a massive increase in plastid DNA and nucleoid number beginning just prior to meiosis. The results support the theory that uniparental inheritance results from degradation of plastid DNA entering the zygote via the male gamete and suggest further studies, using mutants and altered conditions, which might explain how male plastid DNA sometimes survives.  相似文献   

7.
8.
《The Journal of cell biology》1996,135(6):1727-1739
During conjugation, two yeast cells fuse to form a single zygote. Cell fusion requires extensive remodeling of the cell wall, both to form a seal between the two cells and to remove the intervening material. The two plasma membranes then fuse to produce a continuous cytoplasm. We report the characterization of two cell fusion defective (Fus-) mutants, fus5 and fus8, isolated previously in our laboratory. Fluorescence and electron microscopy demonstrated that the fus5 and fus8 mutant zygotes were defective for cell wall remodeling/removal but not plasma membrane fusion. Strikingly, fus5 and fus8 were a specific; both mutations caused the mutant phenotype when present in the MATa parent but not in the MAT alpha parent. Consistent with an a-specific defect, the fus5 and fus8 mutants produced less a-factor than the isogenic wild-type strain. FUS5 and FUS8 were determined to be allelic to AXL1 and RAM1, respectively, two genes known to be required for biogenesis of a-factor. Several experiments demonstrated that the partial defect in a-factor production resulted in the Fus- phenotype. First, overexpression of a-factor in the fus mutants suppressed the Fus- defect. Second, matings to an MAT alpha partner supersensitive to mating pheromone (sst2 delta) suppressed the Fus- defect in trans. Finally, the gene encoding a-factor, MFA1, was placed under the control of a repressible promoter; reduced levels of wild-type a-factor caused an identical cell fusion defect during mating. We conclude that high levels of pheromone are required as one component of the signal for prezygotes to initiate cell fusion.  相似文献   

9.
Haploid cells of opposite mating type of Saccharomyces cerevisiae conjugate to form zygote. During the conjugation process, the degradation or reorganization of the cell wall and the fusion of the two plasma membranes take place. Since chloroquine inhibits cellular events associated with the reorganization of the plasma membrane, the effect of the drug on conjugation was studied. Chloroquine at a concentration, at which cell growth was not retarded, inhibited zygote formation, while it did not affect other mating functions, such as sexual agglutination, production of and response to mating pheromone. Cells in a mating culture containing chloroquine formed no "prezygote" suggesting that they were not prepared for entering into fusion process. The inhibitory effect of chloroquine was reversible as cells formed zygote when they were washed after treatment with chloroquine. Zygote formation was unaffected in cells possessing chloroquine within vacuoles after incubation with the drug in complete medium (YPD) at pH 7.5, followed by washing. This suggests that chloroquine inhibits zygote formation by adsorbing to the plasma membrane of S. cerevisiae.  相似文献   

10.
Membrane differentiations at sites specialized for cell fusion   总被引:13,自引:12,他引:1       下载免费PDF全文
Fusion of plasma membranes between Chlamydomonas reinhardtii gametes has been studied by freeze-fracture electron microscopy of unfixed cells. The putative site of cell fusion developes during gametic differentiation and is recognized in thin sections of unmated gametes as a plaque of dense material subjacent to a sector of the anterior plasma membrane (Goodenough, U.W., and R.L. Weiss. 1975.J. Cell Biol. 67:623-637). The overlying membrane proves to be readily recognized in replicas of unmated gametes as a circular region roughly 500 nm in diameter which is relatively free of "regular" plasma membrane particles on both the P and E fracture faces. The morphology of this region is different for mating-type plus (mt+) and mt- gametes: the few particles present in the center of the mt+ region are distributed asymmetrically and restricted to the P face, while the few particles present in the center of the mt- region are distributed symmetrically in the E face. Each gamete type can be activated for cell fusion by presenting to it isolated flagella of opposite mt. The activated mt+ gamete generates large expanses of particle-cleared membrane as it forms a long fertilization tubule from the mating structure region. In the activated mt- gamete, the E face of the mating structure region is transformed into a central dome of densely clustered particles surrounded by a particle-cleared zone. When mt+ and mt- gametes are mixed together, flagellar agglutination triggeeeds to fuse with an activated mt- region. The fusion lip is seen to develop within the particle-dense central dome. We conclude that these mt- particles play an active role in membrane fusion.  相似文献   

11.
Gamete fusion activates the egg in animals and plants, and the gamete fusion site on the zygote might provide a possible cue for zygotic development and/or embryonic patterning. In angiosperms, a zygote generally divides into a two-celled proembryo consisting of an apical and a basal cell with different cell fates. This is a putative step in the formation of the apical-basal axis of the proembryo. We observed the positional relationship between the gamete fusion site and the division plane formed by zygotic cleavage using an in vitro fertilization system with rice gametes. There was no relationship between the gamete fusion site and the division plane leading to the two-celled proembryo. Thus, the gamete fusion site on the rice zygote does not appear to function as a determinant for positioning the zygote division plane, and the zygote apparently possesses autonomous potential to establish cell polarity along the apical-basal axis for its first cleavage.Key words: asymmetric division, egg cell, fertilization, gamete fusion, rice, sperm cell, two-celled proembryo, zygote  相似文献   

12.
The electron microscopy of zygote formation and the early stages of zygote germination in Nephroselmis olivacea Stein are presented. Although the gametes differ behaviorally during the early stages of gamete fusion, the alga is isogamous. The minus gamete settled on the substrate, and attached with its left side. The plus gamete swam to the minus gamete, attached ventral to the right side of the minus gamete, while slightly on its left side, and plasmogamy started. No specialized organelle for gamete fusion was seen using either scanning or transmission electron microscopy. Gametic fusion was uniform; the right side of the minus gamete always fused with the ventral, slightly left side of the plus gamete, which suggests the participation of the d‐rootlets of the flagellar apparatus of the two gametes. Body scales were retained throughout the entire sexual process. Before karyogamy, a network of endoplasmic reticulum developed between the nuclei. This position corresponded to the contractile vacuole of the plus gamete. Fusion proceeded as the minus gamete was drawn to the plus gamete and resulted in a hemispherical zygote. Fibrous material appeared on the cell surface, embedding the body scales to form a layer that thickened and contributed to the strong adhesion of the zygote to the substrate. During this stage, karyogamy was completed. A thick zygotic wall composed of two layers, an electron‐dense outer layer and a straticulate electron‐lucent inner layer developed beneath the layer of fibrous material and scales. Zygote germination was induced. After the first meiotic division, the layer of fibrous material and scales ruptured and the inner layer of the zygotic wall thinned, allowing the emergence of two germ cells. They had newly formed scales and two starch grains, but no typical pyrenoid.  相似文献   

13.
By screening for the osmotically remediable phenotype, mutations in two genes (orlA and orlB) affecting the cell wall chitin content of Aspergillus nidulans were identified. Strains carrying temperature-sensitive alleles of these genes produce conidia which swell excessively and lyse when germinated at restrictive temperatures. Growth under these conditions is remedied by osmotic stabilizers and by N-acetylglucosamine (GlcNAc). Remediation by GlcNAc suggests that the mutations affect early steps in the synthesis of chitin. Temperature and medium shift experiments indicate that the phenotype is the result of decreased synthesis rather than increased chitin degradation and that osmotic stabilizers act to stabilize a defective wall rather than to stabilize the gene product. Two genes, orlC and orlD, which affect cell wall beta-1,3-glucan content were also identified. Walls from strains carrying mutations in these genes exhibit normal amounts of alpha-1,3-glucan and chitin but reduced amounts of beta-1,3-glucan. As for the chitin-deficient mutants, orlC and orlD mutants spontaneously lyse on conventional media but are remedied by osmotic stabilizers. These results indicate that both chitin and beta-1,3-glucan are likely to contribute to the structural rigidity of the cell wall.  相似文献   

14.
15.
Mating between gametes of the biflagellated unicellular green alga Chlamydomonas reinhardi consists of several events culminating in zygote formation. Initially, the cells agglutinate by their flagellar tips. This is followed by pairing, cell wall loss, and cell fusion. Here we report on the relationship between the length of the flagellum, and the cells' ability to agglutinate, undergo cell wall loss (as measured by medium carbohydrate accumulation), and to form zygotes. We found that deflagellated gametes regained the potential for sexual agglutination when the flagella had regenerated to less than 3 μm (compared to the full length flagella of approx. 11 μm), while medium carbohydrate appeared only after the flagella had reached an average length greater than 5 μm. By inhibiting flagellar regeneration with cycloheximide or colchicine, we determined that carbohydrate release is related to the length of the flagellum and not to the time after deflagellation. A flagellar length dependence similar to that of carbohydrate release was also observed when we measured the relationship between the gametes' ability to fuse and flagellar length.  相似文献   

16.
17.
Sexual reproduction in Chlamydomonas monoica is homothallic: pair formation and cell fusion occur in clonal culture and give rise to a heavily walled diploid zygospore. During maturation of the young zygote, a distinctive "primary zygote wall" is released before the development of the highly reticulate zygospore wall. Using ethyl methanesulfonate and ultraviolet irradiation as mutagens, we have isolated 19 maturation-defective (zym ) mutant strains which upon self-mating produce inviable zygotes. These zygotes fail to release a primary zygote wall, fail to develop the normal zygospore wall, and eventually undergo spontaneous lysis. In nearly all cases, the mutations appear to be expressed only in the diploid zygote; pleiotropic effects on vegetative cell growth or morphology are not evident.—Complementation testing performed on 17 of these mutants indicates that all are recessive and that they define seven distinct complementation groups. Preliminary tetrad analysis of two-factor and multifactor zym crosses provides no evidence for physical clustering of the maturation genes, and instead suggests that they are widely distributed throughout the nuclear genome.  相似文献   

18.
In mated cultures (NC4 X V12) of Dictyostelium discoideum containing 1.0 mM CaCl2, cell fusion generates large numbers of binucleate cells which develop into zygote giant cells. In the absence of Ca2+, binucleate formation does not occur. When 1.0 mM CaCl2 is added to Ca2+-deficient cultures at 18 h, 50% of the cells fuse within 45 min producing large multinucleate syncytia. Small, presumptive gametes appear in Ca2+-deficient cultures and reach a peak of about 20% of the cell population by 10 h, but they maintain this plateau and do not fuse. Upon the addition of CaCl2, the presumptive gametes immediately fuse, producing binucleate cells which develop rapidly into morphologically distinct giant cells. Cell fusion continues, resulting in the formation of extremely large (40-80 microns diameter) multinucleate syncytia by 45 min. The induction of this extensive, synchronous cell fusion does not occur in the presence of other chloride salts and EGTA inhibits it, revealing that Ca+ is the regulatory ion.  相似文献   

19.
In the biflagellated alga Chlamydomonas, adhesion and fusion of the plasma membranes of gametes during fertilization occurs via an actin-filled, microvillus-like cell protrusion. Formation of this ~3-μm-long fusion organelle, the Chlamydomonas fertilization tubule, is induced in mating type plus (mt+) gametes during flagellar adhesion with mating type minus (mt−) gametes. Subsequent adhesion between the tip of the mt+ fertilization tubule and the apex of a mating structure on mt− gametes is followed rapidly by fusion of the plasma membranes and zygote formation. In this report, we describe the isolation and characterization of fertilization tubules from mt+ gametes activated for cell fusion. Fertilization tubules were detached by homogenization of activated mt+ gametes in an EGTA-containing buffer and purified by differential centrifugation followed by fractionation on sucrose and Percoll gradients. As determined by fluorescence microscopy of samples stained with a fluorescent probe for filamentous actin, the method yielded 2–3 × 106 fertilization tubules/μg protein, representing up to a 360-fold enrichment of these organelles. Examination by negative stain electron microscopy demonstrated that the purified fertilization tubules were morphologically indistinguishable from fertilization tubules on intact, activated mt+ gametes, retaining both the extracellular fringe and the internal array of actin filaments. Several proteins, including actin as well as two surface proteins identified by biotinylation studies, copurified with the fertilization tubules. Most importantly, the isolated mt+ fertilization tubules bound to the apical ends of activated mt− gametes between the two flagella, the site of the mt− mating structure; a single fertilization tubule bound per cell, binding was specific for gametes, and fertilization tubules isolated from trypsin-treated, activated mt+ gametes did not bind to activated mt− gametes.  相似文献   

20.
Summary Mutant strains of the unicellular green algaChlamydomonas eugametos are described which are defective in sexual fusion. All mutants are mating type plus (mt+). They are unable to fuse because none of them is capable of protruding a mating structure through the cell wall, neither during sexual agglutination nor after adding dibutyryl-cAMP or compounds that raise the intracellular calcium level, treatments that are effective in wild type cells. Evidence is presented that these mutants lack the lytic enzyme activity which is normally involved in the local hydrolysis of the cell wall to allow the protrusion of the mating structure. Furthermore, a simple light microscopic method is presented to determine the presence of activated mating structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号