首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants.  相似文献   

2.
Tonoplast, ion antiport activities are critical to ion homeostasis and sequestration in plants. The biochemical properties of these activities, and the enzymes that catalyse them, are little characterized. Here we applied biochemical approaches to study some characteristics and to distinguish between Ca2+/H+ and Cd2+/H+ antiporter activities of tonoplast vesicles from non‐transformed, wild‐type plants. Solubilization and reconstitution of oat‐seedling (Avena sativa L.) root tonoplast vesicles resulted in about a 6‐fold loss of protein, about a 6‐fold enhancement of Cd2+/H+ antiport specific activity (at 10 µM Cd2+), and almost complete loss of Ca2+/H+ antiport activity. Similar results were found for vesicles from mature tobacco (Nicotiana tabacum) roots. Cd2+ concentration‐dependent proton efflux was similar and linear with both oat vesicles and proteoliposomes. In contrast, Ca2+ concentration‐dependent proton efflux of oat vesicles was easily observed while that with proteoliposomes was minimal and non‐linear. Cd2+ pre‐treatment of oat vesicles reduced verapamil inhibition of Cd2+/H+ activity and verapamil binding to vesicles, while Ca2+ pre‐treatment was much less protective of Ca2+/H+ activity and verapamil binding. Results show the usefulness of reconstitution, and also inhibitor/ion interaction assays for distinguishing between transporter activities in vitro, but they do not resolve the question of whether there are separate enzymes for Cd2+/H+ and Ca2+/H+. Our observation that solubilization and reconstitution have similar effects on both Cd2+/H+ and Ca2+/H+ activities of root tonoplast vesicles from immature oat and mature tobacco roots suggests that the transporters involved are similar in young and mature roots, and in roots of different species.  相似文献   

3.
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx.  相似文献   

4.
Influx of Rb+(86Rb+) and Ca2+(45Ca2+) was determined in roots of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) after 14 days at 16°C/16 h light, after 1 and 8 weeks of cold acclimation (2°C/8 h light) and at intervals after deacclimation (16°C/16 h light) for up to 14 days. The plants were cultivated at 3 ionic strengths: 100, 10 and 1% of a full strength nutrient solution, containing 3.0 mM K+ and 1.0 mM Ca2+. K+ concentrations in roots and shoots increased during cold treatment, while Ca2+ in the roots decreased. In the shoots Ca2+ concentrations remained the same. Influx of Rb+ as a function of average K+ concentration in the roots of 14-day-old, non-cold-treated plants was high at a certain K+ level in the root and decreased at higher root K+ levels (negative feedback). The pattern for Ca2+ influx versus average concentration of Ca2+ in the root was the reverse. Independent of duration of treatment (1–8 weeks), cold acclimation partly changed the regulation of Rb+ influx, so that it became less dependent upon negative feedback and more dependent on the ionic strength of the cultivation solution. After exposure to 2°C, Ca2+ influx increased at high Ca2+ concentrations in the root as compared with influx in roots of 14-day-old non-cold-treated plants. Under deacclimation, Ca2+ influx gradually decreased again, and reached the level observed before cold treatment within 7–14 days at 16°C; the number of days depending on the exposure time at 2°C. It is suggested that Rb+(K+) influx became adjusted to low temperature and that abscisic acid (ABA) may be involved in this mechanism. It is also suggested that extrusion of Ca2+ was impaired and/or Ca2+ channels were activated at 2°C in roots of plants grown in the full-strength solution and that extrusion was gradually restored and/or Ca2+ channels were closed under deacclimation conditions.  相似文献   

5.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

6.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium.  相似文献   

7.
Abstract: The effects of the divalent cations Ca2+, Sr2+, Ba2+, Mg2+, Mn2+, and Cd2+ were studied on γ-aminobutyric acidA (GABAA) responses in rat cerebral cortical synaptoneurosomes. The divalent cations produced bidirectional modulation of muscimol-induced 36Cl? uptake consistent with their ability to permeate and block Ca2+channels. The order of potency for inhibition of muscimol responses was Ca2+ > Sr2+ > Ba2+, similar to the order for permeation of Ca2+ channels in neurons. The order of potency for enhancement of muscimol responses was Cd2+> Mn2+ > Mg2+, similar to the order for blockade of Ca2+channels in neurons. Neither Ca2+ nor Mg2+ caused accumulation of GABA in the extravesicular space due to increased GABA release or decreased reuptake of GABA by the synaptoneurosomes. The inhibition of muscimol responses by Ca2+ was most likely via an intracellular site of action because additional inhibition could be obtained in the presence of the Ca2+ ionophore, A23187. This confirms electrophysiologic findings in cultured neurons from several species. In contrast, the effects of Cd2+, Mn2+, and Mg2+ may be mediated via blockade of Ca2+ channels or by intracellular sites, although the results of these studies do not distinguish between the two loci. The effects of Zn2+ were also studied, because this divalent cation is reported to have widely divergent effects on GABAA responses. In contrast to other studies, we demonstrate that Zn2+ inhibits GABAA responses in an adult neuronal preparation. Zn2+ produced a concentration-dependent inhibition (limited to 40%) of muscimol responses with an EC50 of 60 μM. The inhibition of muscimol-induced 38Cl? uptake by Zn2+ was noncompetitive. The effect of Zn2+was reduced in the presence of Mg2+ in a competitive or allosteric manner. The portion of GABAA receptors sensitive to Zn2+ may reflect a specific subunit composition in cerebral cortex as previously observed for recombinant GABAA receptors in several expression systems. The modulation of GABAA receptor function by Ca2+ and other divalent cations may play an important role in the development and/or attenuation of neuronal excitability associated with pathologic conditions such as seizure activity and cerebral ischemia.  相似文献   

8.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   

9.
孟令博  赵曼  亢燕  祁智 《西北植物学报》2021,41(10):1681-1690
以羊草幼苗为研究对象,通过调整全营养培养基(CK,0.05 mmol/L Fe2+、0.015 mmol/L Zn2+)中铁或者锌含量设置0、10倍、20倍Fe2+(Zn2+)浓度处理Fe0(Zn0)、Fe10(Zn10)、Fe20(Zn20),以及在高铁培养基中单独添加0.15 mmol/L Zn2+或同时添加10 mmol/L Ca2+、5 mmol/L Mg2+、20 mmol/L K+处理,测定培养6 d后幼苗生长指标和矿质元素含量、以及高铁(Fe20)处理下幼苗根中抗氧化指标和相关基因表达量,探究不同浓度Fe2+、Zn2+对羊草幼苗生长、矿质元素吸收积累及抗氧化指标、基因表达的影响。结果表明:(1)缺锌(Zn0)显著抑制羊草幼苗鲜重的增加和Zn元素的积累,但促进Fe、Mg元素的积累;高浓度锌(Zn10、Zn20)显著促进幼苗叶片生长和Zn元素的积累;缺铁(Fe0)显著抑制幼苗的根长、鲜重和Fe元素的积累,促进Mg、Zn元素的积累;高浓度铁(Fe10、Fe20)显著抑制羊草幼苗根叶生长、根毛发育和Ca、Zn、Mg、K元素的积累。(2)增加Zn2+和Ca2+、Mg2+、K+浓度无法恢复高铁胁迫对幼苗生长的抑制作用。(3)高浓度铁(Fe20)处理羊草幼苗48 h后,根部过氧化物酶、超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶、谷胱甘肽还原酶活性和丙二醛、抗坏血酸、还原型谷胱甘肽含量显著升高;烟酰胺合成酶基因、过氧化物酶基因表达量显著下调,植物类萌发素蛋白基因表达量显著上调。研究发现,羊草幼苗生长发育和矿质元素积累对环境中Zn2+浓度变化不敏感,却受到环境中高浓度Fe2+的显著抑制,并造成严重的氧化胁迫伤害,这种伤害无法在添加Zn2+或同时添加Ca2+、Mg2+、K+的条件下恢复。  相似文献   

10.
The toxicity of Cd2+in vivo during the early phases of radish (Raphanus sativus L.) seed germination and the in vitro Cd2+ effect on radish calmodulin (CaM) were studied. Cd2+ was taken up in the embryo axes of radish seeds; the increase in fresh weight of embryo axes after 24 h of incubation was inhibited significantly in the presence of 10 mmol m?3 Cd2+ in the external medium, when the Cd2+ content in the embryo axes was c. 1.1 μmol g?1 FW. The reabsorption of K+, which characterizes germination, was inhibited by Cd2+, suggesting that Cd2+ affected metabolic reactivation. The slight effect of Cd2+ on the transmembrane electric potential of the cortical cells of the embryo axes excluded a generalized toxicity of Cd2+ at the plasma membrane level. After 24 h of incubation, Cd2+ induced no increase in total acid-soluble thiols and Cd2+-binding peptides able to reduce Cd2+ toxicity. Ca2+ added to the incubation medium partially reversed the Cd2+-induced inhibition of the increase in fresh weight of embryo axes and concomitantly reduced Cd2+ uptake. Equilibrium dialysis experiments indicated that Cd2+ bound to CaM and competed with Ca2+ in this binding. Cd2+ inhibited the activation of Ca2+-CaM-dependent calf-brain phosphodiesterase, inhibiting the Ca2+-CaM active complex. Cd2+ reduced the binding of CaM to the Ca2+-CaM binding enzymes present in the soluble fraction of the embryo axes of radish seeds. The possibility that Cd2+ toxicity in radish seed germination is mediated by the action of Cd2+ on Ca2+-CaM is discussed in relation to the in vivo and in vitro effects of Cd2+.  相似文献   

11.
Spring wheat (Triticum aestivum L. cv. Svenno), oat (Avena sativa L. cv. Brighton) and glasshouse cucumber (Cucumis sativus L. cv. Bestseller F1) were cultured for a week after germination on complete nutrient solutions of three different dilutions (1, 25 and 50% of the full strength medium). K+(86Rb) and 45Ca were present during the whole culture period. Relative humidity (RH) was 50% except during the last day, when half the material was transferred to 90% RH. Efflux of labelled ions was then followed during eight hours on unlabelled solutions of the same composition as before, and at both 50% and 90% RH in the atmosphere. – Uptake of K+(86Rb) during growth tended to be saturated in the 25% medium. Contrariwise, the level of Ca2+ in the roots increased continuously with strength of the medium. At low concentrations cucumber roots were higher in Ca2+ than roots of oat or wheat, whereas all three species showed similar levels of Ca2+ in 50% medium. – At the lowest ionic strength, smooth efflux curves were obtained that could be resolved according to the three-compartment theory. At higher ionic strength, irregularities were observed, and more for Ca2+ than for K+; but for practical purposes compartment analysis with the same time constants could be applied as for the lowest concentration. – Discrimination between K+ and Rb+ differed between the roots, but not much between the shoots of different species. The roots of oat and wheat took up Rb+ preferentially over K+ in the 25% and 50% media; whereas K+ was preferred over Rb+ or little discrimination made in 1% medium and for cucumber. The shoots generally showed less discrimination than the roots. The main variability in discrimination between K+ and Rb+ thus appears to be localized in the tonoplasts of the roots cells. – Low RH around the shoots increased efflux of K+(86Rb) from the cytoplasm and vacuoles of the root cells as compared to the efflux at high RH. DNP (2,4-dinitrophenol) in the medium had the same effect as high RH around the shoots. The signal system that must exist between shoots and roots is discussed as a response to “drought” conditions. In relation to investigations of others, it is assumed that the effect of DNP may indicate that part of the chain between roots and shoots consists of metabolically influenced sites, whose output is influenced by the rate of water transport.  相似文献   

12.
Activation by Ca2+, Mg2+, Zn2+, or Mn2+ of adenosine triphosphatases in a microsomal fraction from wheat roots depends upon the growth temperature when the plants are grown under low salt conditions, but not when the plants get a full-strength culture medium. At low ionic strength, cultivation at 25°C gives only half as high activation as cultivation at 18°C or at high ionic strength at both temperatures. Corresponding data for activation of ATPases from oats also show that low ionic strength during growth gives the highest temperature dependence. Low temperature together with low salt conditions during growth gives the highest ATPase activity after stimulation with divalent cations. High growth temperature and full-strength medium decrease the ATPase activity. Activation energies (Ea) were calculated for the two temperature intervals 35–20°C and 20–5°C. The dominating ATPase stimulation (Ca2+ in wheat, Mg2+ in oats) is characterized by high specific activity combined with a low Ea value. The differences in ATPase activity between oats and wheat can be correlated with different cultivation requirements known from agriculture.  相似文献   

13.
A plasma membrane-rich microsome fraction isolated from barley (Hordeum vulgare L. cv. Conquest) roots contained considerable divalent cation-dependent ATPase activity when assayed at 16°C. The maximal divalent cation-stimulation of the apparent basal ATPase activity varied as Ca2+ > Mg2+ > Mn2+= Zn2+ > Co2+ > Ni2+, with all other divalent cations tested being inhibitory. Double reciprocal plots of the Ca2+- and Mg2+-dependent ATPase velocities as a function of substance concentration were nonlinear, suggesting the presence of multiple catalytic sites. Both MgATP2- and CaATP2- served as the true substrates and apparently bind to the same catalytic sites. Free ATP and Ca2+ could inhibitit the Ca2+- and Mg2+-dependent ATPase. Increasing free Mg2+ levels enhanced the affinity of the Mg2+-dependent ATPase for MgATP2-, while slightly inhibiting the Vmax values. Other divalent cation-nucleoside triphosphate complexes produced maximal enzyme velocities equal to or greater than those generated by CaATP2- and MgATP2-. However, the ATPase had significantly higher affinities for CaATP2- and MgATP2-, than for the alternative substrates. The high and low affinity components of the Ca2+- and Mg2+-dependent ATPase exhibited optimal Vmax values at pH 5 and 6, respectively. Analysis of the pH-dependence of the enzyme Km values indicated enzyme-substrate binding with charge neutralization at neutral and alkaline pH's. Nonlinear double reciprocal plots were obtained at all assay temperatures. However, the complexity of the enzyme kinetics became less apparent at the higher assay temperatures. The kinetics of the barley root divalent cation-dependent ATPase activities are discussed in terms of the kinetics of ATPases from other plants and the methods used to obtain them, and compared to the kinetics of ion transport ATPases from animal membranes.  相似文献   

14.
Growth of Plantago lanceolata L., P. media L. and P. coronopus L. was followed at two levels of mineral nutrition (low-salt and high-salt). In addition the response of transfer of plants from low-salt conditions to high-salt conditions and vice versa was studied. Growth of these Plantago species was not much affected by the nutritional level. P. coronopus showed the least dependence on the level of mineral nutrition. The Ca2+- and Mg2+-stimulated ATPase activity of microsomal preparations of the roots of Plantago was also studied. A pH optimum at pH 6.5 was observed in all species, together with a relatively high ATPase activation by Mg2+ in P. lanceolata, by Ca2+ in P. media, and by both ions in P. coronopus. The specific activity of the ATPases was highest in preparations from low-salt roots. The three species all occur in relatively nutrient-poor habitats, but they are at the same time particularly adapted to circumneutral soils (P. lanceolata), to Ca2+-rich soils (P. media) and to alternating levels of mineral nutrition (P. coronopus). The properties of the ATPases (Km, Vmax, protein content) and the growth are discussed in relation to these ecological properties of the species.  相似文献   

15.
The influence of extracellular Ca2+ and Mg2+ on the transport of 2-deoxy-[3H]glucose into human polymorphonuclear neutrophils was studied. Omission of these cations from the cell suspensions had little effect on resting hexose uptake. Furthermore, the addition of the bivalent cation chelator, EDTA, depressed uptake only slightly. Similarly, neither cation was essential for the enhanced 2-deoxy-D-[3H]glucose uptake stimulated by two chemotactic factors (C5a and N-formylmethionylleucylphenylalanine) and arachidonic acid: enhanced uptake was only partially depressed by the omission of Ca2+ and Mg2+ from the suspensions and was still prominent in the presence of EDTA. Two other neutrophil stimulants, the ionophores, A23187 and ionomycin, also enhanced hexose uptake but their actions were heavily dependent upon extracellular bivalent cations and were totally abrogated by EDTA. In all instances, extracellular Ca2+, but not Mg2+, supported optimal enhanced hexose transport induced by stimuli.Activation of 2-deoxy-D-[3H]glucose uptake by each of the five stimuli was totally blocked by cytochalasin B (a blocker of carrier-mediated hexose transport) and D-glucose but not by L-glucose. The data indicate, therefore, that a variety of neutrophil stimulants activate carrier-mediated hexose transport. Although this transport can be triggered by the movement of extracellular Ca2+ into the cell (as exemplified by the action of the two ionophores), such Ca2+ movement is not required for the actions of chemotactic factors or arachidonic acid. Other mechanisms, such as a rearrangement of intracellular Ca2+, may be involved in mediating the activation of hexose transport induced by the latter stimuli.  相似文献   

16.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

17.
Sugar beets ( Beta vulgaris L. cv. Monohill) grown in a complete nutrient solution, were treated with Cd2+ (5 or 50 μ M ) and/or EDTA (10 or 100 μ M ) in different combinations. The Cd contents of five-week-old roots and shoots were determined by atomic absorption spectrophotometry, and the sucrose, glucose and fructose contents were measured enzymatically. The Cd2+ uptake in both roots and shoots shows a linear relationship to the concentration of free Cd2+ in the nutrient solution. This uptake is diminished in the presence of EDTA, suggesting that the Cd-EDTA complex is unable to penetrate the membranes. The contents of glucose, fructose and sucrose in both roots and shoots decrease with increasing uptake of free Cd2+. This may be a secondary effect caused by the inhibition of photosynthesis in the presence of Cd2+. EDTA reduces the inhibition of Cd2+ on sugar formation and accumulation. In the presence of EDTA alone the sugar content increases somewhat. EDTA slightly influences the dry weights of whole plants. The ratio roots:whole plants increases. Cd2+ (≤ 50 μ M ) increases the dry matter portion of roots by ca 30%, but not that of shoots.  相似文献   

18.
Brüggemann, W. and Moog, P. R. 1989. NADH-dependent Fe3+EDTA and oxygen reduction by plasma membrane vesicles from barley roots. Biochemical properties of pyridine-dinucleotide-dependent Fe3+-EDTA reductase were analysed in purified plasma membranes (PM) from barley (Hordeum vulgare L. cv. Marinka) roots. The enzymatic activity preferred NADH over NADPH as electron donor and it was 3-fold increased in the presence of detergent. The reductase showed a pH optimum of 6.8 and saturable kinetics for NADH with Km (NADH) of 125 μM and Vmax of 143 nmol Fe (mg protein)-1 min-1 in the presence of 500 μM Fe3+EDTA. For the dependence of the reaction rate on the iron compound, Km(Fe3+EDTA) of 120 μM and Vmax of 184 nmol (mg protein)-1 min-1 were obtained. The activity was insensitive to superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6) and antimycin A, but stimulated by an oxygen-free reaction medium. It could be solubilized by 0.25% (w/v) Triton X-100. The solubilized enzyme revealed one band in native polyacrylamide gel electrophoresis (PAGE) and in isoelectric focussing (IEF) at pl 7.4 by enzyme staining. Major polypeptides with molecular weights of 94, 106, 120 and 205 kDa corresponded to the enzyme-stained band from native PAGE. Analysis of oxygen consumption by the membranes revealed the existence of NADH:CK oxidoreductase activity, which was stimulated by salicylhydroxamic acid (SHAM), chinhydron, Fe3+EDTA and Fe3+EDTA but not by K3 [Fe(CN)6] or K4[Fe (CN)6). The stimulating effect of the iron chelates on oxygen consumption was due to Fe2+ and could be suppressed by bathophenanthroline disulfonate (BPDS), SOD and p-chloromercurophenylsulfonic acid (PCMS). The results are discussed with respect to the nature of the stimulation.  相似文献   

19.
Influx of Rb+(86Rb+) and Ca2+ (45Ca2+) in roots of intact winter wheat (Triticum aestivum L. cv. Weibulls Starke II) was determined at intervals before, during and after exposure to cold acclimation conditions (2°C and 8 h light period). The plants were grown in nutrient medium of two ionic strengths. During the initial two weeks of growth at 16°C and 16 h light period, Rb+ influx into roots decreased with increasing age, probably as a consequence of a decreasing proportion of metabolically active roots. The presence of 10?4M 2,4-dinitrophenol (DNP) reduced Rb+ influx to a low and constant level, indicating that metabolic influx was the dominant process. In contrast, Ca2+ influx in plants grown in full strength nutrient solution was higher in the presence than in the absence of DNP. This effect may have been due to an active extrusion mechanism mediating re-export of absorbed Ca2+(45Ca2+) during the uptake experiment. With the metabolic uncoupler inhibiting such extrusion the Ca2+(45Ca2+) influx mesured would increase. During cold treatment, Rb+ influx remained at a low level, and was further decreased when DNP was present in the uptake solution. This effect may have been due to inhibition of residual active influx of Rb+ at 2°C by the uncoupler and/or to a decrease in membrane permeability. In contrast to Rb+, Ca2+ influx increased during cold treatment, which could again be explained as inhibition of re-export. The presence of DNP reduced Ca2+ influx at 2°C, indicating decreased membrane permeability by DNP at low temperature. After transfer of plants from cold acclimation conditions to 16°C, Rb+ and Ca2+ influx increased in plants grown at both ionic strengths. Influx levels were independent of the length of the cold acclimation period (1, 6 and 8 weeks), but the patterns were different for the two ions. After each of the cold acclimation periods, Rb+ influx increased during the first week and decreased or remained at the same level during the second week, while Ca2+ influx always decreased during the second week of post-cold treatment.  相似文献   

20.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号