首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The enhanced green fluorescent protein (GFP) gene (egfp) was used as a reporter of gene expression driven by the glyceraldehyde-p-dehydrogenase (gpd) gene promoter and the manganese peroxidase isozyme 1 (mnp1) gene promoter in Phanerochaete chrysosporium. Four different constructs were prepared. pUGGM3' and pUGiGM3' contain the P. chrysosporium gpd promoter fused upstream of the egfp coding region, and pUMGM3' and pUMiGM3' contain the P. chrysosporium mnp1 promoter fused upstream of the egfp gene. In all constructs, the egfp gene was followed by the mnp1 gene 3' untranslated region. In pUGGM3' and pUMGM3', the promoters were fused directly with egfp, whereas in pUGiGM3' and pUMiGM3', following the promoters, the first exon (6 bp), the first intron (55 bp), and part of the second exon (9 bp) of the gpd gene were inserted at the 5' end of the egfp gene. All constructs were ligated into a plasmid containing the ura1 gene of Schizophyllum commune as a selectable marker and were used to transform a Ural1 auxotrophic strain of P. chrysosporium to prototrophy. Crude cell extracts were examined for GFP fluorescence, and where appropriate, the extracellular fluid was examined for MnP activity. The transformants containing a construct with an intron 5' of the egfp gene (pUGiGM3' and pUMiGM3') exhibited maximal fluorescence under the appropriate conditions. The transformants containing constructs with no introns exhibited minimal or no fluorescence. Northern (RNA) blots indicated that the insertion of a 5' intron resulted in more egfp RNA than was found in transformants carrying an intronless egfp. These results suggest that the presence of a 5' intron affects the expression of the egfp gene in P. chrysosporium. The expression of GFP in the transformants carrying pUMiGM3' paralled the expression of endogenous mnp with respect to nitrogen and Mn levels, suggesting that this construct will be useful in studying cis-acting elements in the mnp1 gene promoter.  相似文献   

4.
A gene encoding manganese peroxidase (mnp1) from Phanerochaete chrysosporium was cloned downstream of a constitutive glyceraldehyde-3-phosphate dehydrogenase promoter in the methylotrophic yeast Pichia pastoris. Three different expression vectors were constructed: pZBMNP contains the native P. chrysosporium fungal secretion signal, palphaAMNP contains an alpha-factor secretion signal derived from Saccharomyces cerevisiae, and pZBIMNP has no secretion signal and was used for intracellular expression. Both the native fungal secretion signal sequence and alpha-factor secretion signal sequence directed the secretion of active recombinant manganese peroxidase (rMnP) from P. pastoris transformants. The majority of the rMnP produced by P. pastoris exhibited a molecular mass (55-100 kDa) considerably larger than that of the wild-type manganese peroxidase (wtMnP, 46 kDa). Deletion of the native fungal secretion signal yielded a molecular mass of 39 kDa for intracellular rMnP in P. pastoris. Treatment of the secreted rMnP with endoglycosidase H (Endo H) resulted in a considerable decrease in the mass of rMnP, indicating N-linked hyperglycosylation. Partially purified rMnP showed kinetic characteristics similar to those of wtMnP. Both enzymes also had similar pH stability profiles. Addition of exogenous Mn(II), Ca(II), and Fe(III) conferred additional thermal stability to both enzymes. However, rMnP was slightly less thermostable than wtMnP, which demonstrated an extended half-life at 55 degrees C.  相似文献   

5.
Hydroxyl radical (HO.) has been implicated in the degradation of lignin by Phanerochaete chrysosporium. This study assessed the possible involvement of HO. in degradation of lignin substructural models by intact cultures and by an extracellular ligninase isolated from the cultures. Two non-phenolic lignin model compounds [aryl-C(alpha)HOH-C(beta)HR-C(gamma)H2OH, in which R = aryl (beta-1) or R = O-aryl (beta-O-4)] were degraded by cultures, by the purified ligninase, and by Fenton's reagent (H2O2 + Fe2+), which generates HO.. The ligninase and the cultures formed similar products, derived via an initial cleavage between C(alpha) and C(beta) (known to be an important biodegradative reaction), indicating that the ligninase is responsible for model degradation in cultures. Products from the Fenton degradation were mainly polar phenolics that exhibited little similarity to those from the biological systems. Mass-spectral analysis, however, revealed traces of the same products in the Fenton reaction as seen in the biological reactions; even so, an 18O2-incorporation study showed that the mechanism of formation differed. E.s.r. spectroscopy with a spin-trapping agent readily detected HO. in the Fenton system, but indicated that no HO. is formed during ligninase catalysis. We conclude, therefore that HO. is not involved in fungal C(alpha)-C(beta) cleavage in the beta-1 and beta-O-4 models and, by extension, in the same reaction in lignin.  相似文献   

6.
7.
8.
9.
10.
11.
12.
To elucidate functional diversity of cytochrome P450 monooxygenases from the white-rot basidiomycete Phanerochaete chrysosporium (PcCYPs), we conducted a comprehensive functional screening using a wide variety of compounds. A functionomic survey resulted in characterization of novel PcCYP functions and discovery of versatile PcCYPs that exhibit broad substrate profiles. These results suggested that multifunctional properties of the versatile PcCYPs would play crucial roles in diversification of fungal metabolic systems involved in xenobiotic detoxification. To our knowledge, this is the first report describing multifunctional properties of versatile P450s from the fungal kingdom. An increased compilation of PcCYP functions will facilitate a thorough understanding of metabolic diversity in basidiomycetes and provide new insights that could also expedite practical applications in the biotechnology sector.  相似文献   

13.
Mapping the 23-kb circular mitochondrial DNA from the yeast Kluyveromyces thermotolerans has shown that only one change occurs in the gene order in comparison to the 19-kb mtDNA of Candida (Torulopsis) glabrata. Sequence analysis of the mitochondrially encoded cytochrome oxidase subunit 2 gene reveals that despite their conserved gene order, the two small genomes are more distantly related than larger mtDNA molecules with multiple rearrangements. This result supports a previous observation that larger mitochondrial genomes are more prone to rearrange than smaller forms and suggests that the architecture of the two small molecules is likely to represent the structure of an ancestor.Correspondence to: G.D. Clark-Walker 0592  相似文献   

14.
15.
Hydroxylamine oxidation was measured in four recently isolated heterotrophic nitrate-reducing bacteria belonging to the generaPseudomonas, Moraxella, Arthrobacter andAeromonas. A hydroxylamine-cytochromec oxidoreductase activity was detected in periplasmic fractions of thePseudomonas andAeromonas spp. and in total soluble fractions of theArthrobacter sp. A monomeric 19-kDa non-haem iron hydroxylamine-cytochromec oxidoreductase was purified from thePseudomonas species and shown to be similar to hydroxylaminecytochromec oxidoreductase ofParacoccus denitrificans.Abbreviations AMO Ammonia monoxygenase - HAO Hydroxylamine-cytochromec oxidoreductase  相似文献   

16.
A transcribed gene in an intron of the human factor VIII gene   总被引:18,自引:0,他引:18  
  相似文献   

17.
18.
19.
Virtually all pre-mRNA introns begin with the sequence /GU and end with AG/ (where / indicates a border between an exon and an intron). We have previously shown that the G residues at the first and last positions of the yeast actin intron interact during the second step of splicing. In this work, we ask if other highly conserved intron nucleotides also take part in this /G-G/ interaction. Of special interest is the penultimate intron nucleotide (AG/), which is important for the second step of splicing and is in proximity to other conserved intron nucleotides. Therefore, we tested interactions of the penultimate intron nucleotide with the second intron nucleotide (/GU) and with the branch site nucleotide. We also tested two models that predict interactions between sets of three conserved intron nucleotides. In addition, we used random mutagenesis and genetic selection to search for interactions between nucleotides in the pre-mRNA. We find no evidence for other interactions between intron nucleotides besides the interaction between the first and last intron nucleotides.  相似文献   

20.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号