首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the distribution of connexin (Cx) 43 and ZO-1 by confocal laser scanning microscopy at early stages of dentinogenesis and amelogenesis. Labeling for Cx43 was observed at early stages of differentiation in both the epithelial cells and differentiating odontoblasts. Immunolabeling was detected at the distal and medial regions of undifferentiated ameloblasts and between cells from stratum intermedium and stellate reticulum. Differentiating odontoblasts exhibited immunoreaction for this antibody at their distal end. Immunoreactivity for ZO-1 was observed at regions that correspond to the proximal and distal junctional complexes of differentiating ameloblasts. Staining for ZO-1 was observed at apical regions of odontoblasts with a punctate appearance. In more advanced stages, expression of Cx43 was more evident on ameloblasts, especially at the junctional complexes. Punctate immunolabeling for Cx43 was observed at the lateral sides of differentiating ameloblasts and between the other cells of the enamel organ. Immunoreaction for ZO-1 in ameloblasts was more evident than at the previous stage. It was also observed at the distal end of differentiated odontoblasts. The present study showed that differentiating ameloblasts and odontoblasts express Cx43 and ZO-1 as early as the start of the differentiation process. In addition, the expression of these junctional proteins increases as differentiation of cells continues.  相似文献   

2.
Antiserum to the 28-kilodalton vitamin D-dependent calcium-binding protein (CaBP) was used to localize CaBP in histologic sections of the continuously erupting incisor in mandibles obtained from normal rats. With the peroxidase--anti-peroxidase technique, no CaBP was detected in undifferentiated ameloblasts or in those which had become columnar and were facing pulp. Calcium-binding protein was first noted in the cytoplasm of random ameloblasts facing dentin in the presecretion zone. As the ameloblasts became more mature in the zone of enamel secretion, CaBP was uniformly present in their cytoplasm. Ameloblasts with Tome's processes clearly contained CaBP in these processes as well as in the cell-body cytoplasm. Near the later developmental stages of the zone of enamel secretion, some of the adjacent underlying cells of the stratum intermedium also contained CaBP in their cytoplasm. In some stratum intermedium cells and papillary cells, CaBP extended into the zone of enamel maturation, but not to the end of that zone. Cytoplasmic CaBP continued to be present in ameloblasts as they progressed through the zone of enamel maturation to the final, shortened cells at the gingival margin of the erupting incisor. No CaBP was detected in odontoblasts, pulpal cells, the stellate reticulum, or the outer dental epithelium.  相似文献   

3.
The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes' processes of inner enamel-secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel- and outer enamel-secretory ameloblasts, where N-cadherin and β-catenin were localized. frizzled-3 was also localized in differentiating inner enamel epithelial cells. Vang11 was localized sparsely in differentiating preameloblasts and extensively at the cell boundary of stratum intermedium. Celsr1 was not localized in ameloblasts but localized in odontoblasts extensively. These results suggest the involvement of planar cell polarity proteins in odontogenesis.  相似文献   

4.
Ameloblasts from different regions of upper incisors of rats were examined with the electron microscope. During matrix formation, the cells resemble secretory cells. They are extremely long, tightly packed, and show considerable polarity. Nuclei are at the basal end of the cell. Mitochondria are proximal and the Golgi apparatus distal to the nucleus. Ergastoplasm is found in all levels but mainly in the distal end. A terminal bar apparatus separates the distal end of the cell from Tomes's process. Next to this is soft enamel. The next incisal region is a transitional zone in which the ameloblasts separate easily from the enamel. Endoplasmic reticulum is dilated and very obviously in communication with the perinuclear space. Mitochondria are present not only proximal, but also distal, to the nucleus. The next incisal zone consists of cells related to the maturation of enamel. They no longer resemble secretory cells, but now have more characteristics of transporting cells. Processes from the distal end of the cell are present with mitochondria closely applied to the base of the processes. A considerable amount of intercellular space exists with microvilli projecting into the space. Iron granules appear in these cells, and the ergastoplasmic cisternae are dilated. In the incisal end of this zone, the iron granules form aggregates. The iron finally leaves the cells to enter the enamel. Free RNP particles and fibrils become more evident after the iron leaves the cells. In the most incisal region, the ameloblasts are further reduced in height. Distal processes are no longer present and fibrils are more conspicuous.  相似文献   

5.
A modified Wachstein-Meisel medium containing lead or cerium as capturing ions was used to localize Ca2+-Mg2+ adenosine triphosphatase (ATPase; EC 3.6.1.3) in rat incisor ameloblasts during enamel formation. Sections representing different developmental stages were processed for electron microscopic cytochemistry. Distribution and intensity of the observed reaction product, which was almost exclusively associated with cell membranes, varied according to the stage of enamel formation. During the secretory stage, intense reaction product was evident along the entire plasma membrane of ameloblasts and papillary cells. The early transitional ameloblasts showed reaction product on their proximal and lateral cell membranes, but not distally. In late transitional (pre-absorptive) ameloblasts, distal cell membranes exhibited intense reaction product. During enamel maturation, smooth-ended ameloblasts showed reaction product proximally and laterally, but not distally. Ruffle-ended maturative ameloblasts exhibited intense reaction product along their lateral and distal membranes. The intensity of the latter was decreased but not eliminated by levamisole. In the transition from smooth-ended to ruffle-ended cells, the reaction product became evident distally, concomitant with the appearance of cell membrane invaginations. These data are consistent with a possible role for Ca2+-Mg2+ ATPase in controlling calcium availability at the enamel mineralization front.  相似文献   

6.
The localization of actin, myosin, tropomyosin, alpha-actinin, vinculin, and desmoplakin I/II was visualized by immunofluorescence microscopy. Antibodies against myosin, tropomyosin, and alpha-actinin and rhodamine-phalloidin labeled strongly the proximal and distal terminal webs which ultrastructurally consist of dense microfilament bundles. In the distal terminal web, the staining by these reagents occurred mostly perpendicular to the long axis of the incisor. Antivinculin stained the general area where the distal terminal web is located in the ameloblast. Anti-desmoplakin I/II labeled the junctional area associated with the proximal and distal terminal webs. The anti-desmoplakin staining was stronger along the cell border perpendicular to the long axis of the incisor. Comparison of the rhodamine-phalloidin staining pattern of the distal terminal web and the enamel secretion pattern by ameloblasts revealed that a change in the distal terminal web staining pattern preceded a change in the secretion pattern. These observations suggest that the cytoskeletal organization in the ameloblast is involved in the formation of the enamel matrix pattern in the rat incisor.  相似文献   

7.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

8.
9.
Rapidly frozen upper incisor teeth of rats and molar teeth of calves were freeze fractured, freeze dried and dry dissected in preparation for energy dispersive x-ray emission microanalysis in the scanning electron microscope. Successive zones of ameloblasts adjacent to maturing rat incisor enamel were examined, beginning with cells adjacent to the least mature enamel and progressing to cells over increasingly more mature enamel. Pronounced Kalpha1,2 x-ray peaks were obtained for P, S, Cl, K and Fe but not for Ca. Ca levels were also very low compared with P, S, Cl and K in calf molar maturation ameloblasts, whereas they were high in the distal poles of the secretory odontoblasts in the same specimens. The findings indicate that both intra- and extracellular Ca levels are extremely low in maturation ameloblasts. It is concluded that Ca is neither stored nor concentrated in large amounts by the maturation ameloblasts prior to its entry into the enamel. The suggestion is made that the maturation ameloblasts might regulate entry of calcium into enamel by serving as a selective barrier.  相似文献   

10.
Stromelysin-1 (matrix metalloproteinase-3) or proteoglycanase was visualized by light and electron microscopy immunolabelling in the forming zone of rat incisors. In predentine, labelling was more dense at the transition zone between the inner proximal third and the two outer thirds. Odontoblast processes were also positively stained, mostly in predentine and to a lesser degree in dentine. The dentine–enamel junction was intensely labelled, whereas dentine and forming enamel were only faintly stained. Gold–antibodies complexes were seen inside secretory ameloblasts and odontoblasts in cytosolic locations. The distribution of stromelysin-1 was compared with the distribution of 2-B-6 epitope, an antibody recognizing chondroitin-4-sulphate/dermatan sulphate and which showed a decreasing gradient from the proximal zone to the distal part of predentine. In contrast, both 5-D-4, an anti-keratan sulphate antibody and an anti-lumican antibody displayed a reversed distribution, with an increase seen from the proximal and central thirds to the distal part of predentine. This coordinated distribution suggests that stromelysin-1 may have a functional role, being implicated in predentine in the degradation of chondroitin-4-sulphate/dermatan sulphate-containing proteoglycans, and consequently allowing keratan sulphate proteoglycan concentration to increase near the border where mineralization is initiated.  相似文献   

11.
Stromelysin-1 (matrix metalloproteinase-3) or proteoglycanase was visualized by light and electron microscopy immunolabelling in the forming zone of rat incisors. In predentine, labelling was more dense at the transition zone between the inner proximal third and the two outer thirds. Odontoblast processes were also positively stained, mostly in predentine and to a lesser degree in dentine. The dentine–enamel junction was intensely labelled, whereas dentine and forming enamel were only faintly stained. Gold–antibodies complexes were seen inside secretory ameloblasts and odontoblasts in cytosolic locations. The distribution of stromelysin-1 was compared with the distribution of 2-B-6 epitope, an antibody recognizing chondroitin-4-sulphate/dermatan sulphate and which showed a decreasing gradient from the proximal zone to the distal part of predentine. In contrast, both 5-D-4, an anti-keratan sulphate antibody and an anti-lumican antibody displayed a reversed distribution, with an increase seen from the proximal and central thirds to the distal part of predentine. This coordinated distribution suggests that stromelysin-1 may have a functional role, being implicated in predentine in the degradation of chondroitin-4-sulphate/dermatan sulphate-containing proteoglycans, and consequently allowing keratan sulphate proteoglycan concentration to increase near the border where mineralization is initiated.  相似文献   

12.
13.
The localization of calcium in the enamel organ of rapidly-frozen, freeze-substituted rat incisors in early-stage amelogenesis was examined by a histochemical calcium-staining method. In secretory ameloblasts, glyoxal bis(2-hydroxyanil) (GBHA) staining revealed intense red reactions in mitochondria and tubulovesicular structures located throughout the cytoplasm, while no reaction was seen in the nucleus and cytosol, nor along the plasma membranes of the respective cells. No significant GBHA reaction was observed in the intercellular compartment and other cells of the enamel organ. Some granular reactions were localized in the cells of the adjacent connective tissue. Control tests confirmed the specificity of GBHA reactions for calcium. Thus, the present observations provide histochemical evidence indicating an exclusive localization of calcium in mitochondria and tubulovesicular structures of the secretory ameloblast, and support their contributions to the translocation of calcium from the proximal to the distal pole of the cytoplasm.  相似文献   

14.
Summary The nature and distribution of cell contacts have been examined in the human enamel organ in bell stage. The lateral cell surfaces of secretory ameloblasts are linked at their distal (apical) and proximal (basal) parts by junctional complexes consisting of tight junctions, large intermediate junctions (zonulae adherentes), occasional gap junctions and one or more series of desmosomes. Scattered desmosomes and large gap junctions link epithelial cells of the external enamel epithelium, stellate reticulum, stratum intermedium and internal enamel epithelium including secretory ameloblasts. Furthermore the above-mentioned layers are also linked together by desmosomes and gap junctions.With increasing maturation of the enamel organ an increase in size and number of gap junctions is observed. Some possible implications of the role of the different junctions are considered. The gap junctions probably participate in cell differentiation in the normal morphogenesis of the teeth as well as in metabolic and ionic coupling of the cells of the enamel organ. By means of tight junctions, adjacent secretory ameloblasts cooperate to form a physical barrier which might prevent the diffusion of some types of molecules or substances (e.g. secretory material distally and acid mucopolysaccharides proximally) through the interspaces between the cells. Adhering junctions might assist in regulation of the mechanical properties of the enamel organ as a whole.This work was supported by grants from Statens almindelige Videnskabsfond, Copenhagen, and the Association for the Aid of the Crippled Children, New York.  相似文献   

15.
M Nakai  Y Tatemoto  H Mori  M Mori 《Histochemistry》1985,83(5):455-463
The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively strange lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

16.
K S Prostak  Z Skobe 《Tissue & cell》1990,22(5):681-696
The access of exogenous materials to the developing enamel surface has been intensively studied in rodents, but not in other mammalian species. This ultrastructural study investigates the permeability of injected horseradish peroxidase (HRP) and lanthanum tracers in cat and ferret tooth buds. In cat enamel organs fixed by immersion, lanthanum did not escape the capillaries overlying secretory stage tooth buds, but it did permeate up to the distal junctions of ruffle-ended (RA) and the proximal junctions of smooth-ended (SA) ameloblasts. Perfusion fixation with lanthanum compromised junctional integrity of cat ameloblasts at all stages of development. Similarly, HRP rarely escaped the capillaries associated with cat secretory stage enamel organs. However, unlike lanthanum, HRP was mostly confined to the vasculature of maturation stage enamel organs in immersion fixed cats at all time intervals examined. In ferrets, HRP penetrated up to, but not beyond, the distal junctional complexes of secretory ameloblasts. In maturation stage enamel organs, HRP coated the papillary and RA cells, but did not penetrate the RA distal cell junctions. HRP did permeate the extracellular spaces of SA to reach the underlying enamel surface. Ameloblasts in transitional phases of SA and RA endocytosed HRP at the distal cell surface. This data leads to several conclusions. First, HRP localization in the ferret paralleled that observed in rodents. Second, the results of cat enamel organs substantiate previous studies showing perfusion fixation can increase vascular and intercellular permeability to lanthanum. However, in cats fixed by immersion, both lanthanum and HRP were restricted to capillaries associated with the secretory stage enamel organ, and only lanthanum escaped maturation stage capillaries. It is suggested that variations in the fenestrations and distribution of capillaries associated with the cat enamel organ may differentially retain some materials and permit other materials to escape with relative ease.  相似文献   

17.
Summary Rapidly frozen upper incisor teeth of rats and molar teeth of calves were freeze fractured, freeze dried and dry dissected in preparation for energy dispersive x-ray emission microanalysis in the scanning electron microscope.Successive zones of ameloblasts adjacent to maturing rat incisor enamel were examined, beginning with cells adjacent to the least mature enamel and progressing to cells over increasingly more mature enamel. Pronounced K 1, 2, x-ray peaks were obtained for P, S, Cl, K and Fe but not for Ca. Ca levels were also very low compared with P, S, Cl and K in calf molar maturation ameloblasts, whereas they were high in the distal poles of the secretory odontoblasts in the same specimens.The findings indicate that both intra- and extracellular Ca levels are extremely low in maturation ameloblasts. It is concluded that Ca is neither stored nor concentrated in large amounts by the maturation ameloblasts prior to its entry into the enamel. The suggestion is made that the maturation ameloblasts might regulate entry of calcium into enamel by serving as a selective barrier.  相似文献   

18.
Tooth morphogenesis results from reciprocal interactions between oral epithelium and ectomesenchyme culminating in the formation of mineralized tissues, enamel, and dentin. During this process, epithelial cells differentiate into enamel-secreting ameloblasts. Ameloblastin, an enamel matrix protein, is expressed by differentiating ameloblasts. Here, we report the creation of ameloblastin-null mice, which developed severe enamel hypoplasia. In mutant tooth, the dental epithelium differentiated into enamel-secreting ameloblasts, but the cells were detached from the matrix and subsequently lost cell polarity, resumed proliferation, and formed multicell layers. Expression of Msx2, p27, and p75 were deregulated in mutant ameloblasts, the phenotypes of which were reversed to undifferentiated epithelium. We found that recombinant ameloblastin adhered specifically to ameloblasts and inhibited cell proliferation. The mutant mice developed an odontogenic tumor of dental epithelium origin. Thus, ameloblastin is a cell adhesion molecule essential for amelogenesis, and it plays a role in maintaining the differentiation state of secretory stage ameloblasts by binding to ameloblasts and inhibiting proliferation.  相似文献   

19.
20.
Summary The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats, were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively stranges lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号