首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA double-strand breaks are caused by both intracellular physiological processes and environmental stress. In this study, we used laser microbeam cut (abbreviated microcut or cut), which allows specific DNA damage in the pronucleus of a fertilized egg and in individual blastomere(s) of an early embryo, to investigate the response of early embryos to DNA double-strand breaks. Line type γH2AX foci were detected in the cut region, while Chk2 phosphorylation staining was observed in the whole nuclear region of the cut pronuclei or blastomeres. Zygotes with cut male or female pronucleus showed poor developmental capability: the percentage of cleavage embryos was significantly decreased, and the embryos failed to complete further development to blastocysts. The cut blastomeres in 2-cell, 4-cell, and 8-cell embryos ceased cleavage, and they failed to incorporate into compacted morulae, but instead underwent apoptosis and cell death at the blastocyst stage; the uncut part of embryos could develop to blastocysts, with a reduced percentage or decreased cell number. When both blastomeres of the 2-cell embryos were cut by laser microbeam, cell death occurred 24 h earlier, suggesting important functions of the uncut blastomere in delaying cell death of the cut blastomere. Taken together, we conclude that microbeam-induced DNA damage in early embryos causes compromised development, and that embryos may have their own mechanisms to exclude DNA-damaged blastomeres from participating in further development.  相似文献   

2.
The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the zebrafish embryo has been considered as an alternative model for traditional in vivo developmental toxicity screening. The use of this organism in conjunction with traditional in vivo developmental toxicity testing has the potential to reduce cost and increase throughput of testing the chemical universe, prioritize chemicals for targeted toxicity testing, generate predictive models of developmental toxicants, and elucidate mechanisms and adverse outcome pathways for abnormal development. This review gives an overview of the zebrafish embryo for pre dictive toxicology and 21st century toxicity testing. Developmental eye defects were selected as an example to evaluate data from the U.S. Environmental Protection Agency's ToxCast program comparing responses in zebrafish embryos with those from pregnant rats and rabbits for a subset of 24 environmental chemicals across >600 in vitro assay targets. Cross-species comparisons implied a common basis for biological pathways associated with neuronal defects, extracellular matrix remodeling, and mitotic arrest.  相似文献   

3.
The present study shows that there is communication between reaggregated asynchronous cleavage stage blastomeres that regulates blastocoele formation. Individual blastomeres from eight-cell murine embryos were transferred to empty zonae pellucidae, intact two-cell embryos, or enucleated two-cell embryos, and were examined over a period of 75 hours for development of cavitation. It was found that the isolated blastomeres cavitated concurrently with intact control eight-cell embryos, while intact control two-cell embryos cavitated 24 hours later. However, the embryos resulting from combining a two-cell embryo and a blastomere from an eight-cell embryo cavitated at a time in between the eight- and two-cell controls.  相似文献   

4.
A hundred years have passed since Driesch performed the classical experiment of separating sea urchin blastomeres from a two-cell-stage embryo, finding that each developed into a complete though smaller larva. The earlier studies of Roux using frogs showed that inactivating one of the two blastomeres by a heated needle resulted, during the early stages of development, in the formation of a half embryo. In this type of experiment, in which the two blastomeres are not separated, the live blastomere continues its development while it is still attached to an inactivated neighbour. In the work reported here, Roux's experimental design was used on two-cell-stage embryos of sea urchins. In contrast to the findings of Roux using amphibians, it was found (as claimed by Driesch) that the living blastomere developed as in the case of separated blastomeres.  相似文献   

5.
Cryopreservation of sheep embryos with ethylene glycol as a protectant appears to be more effective than glycerol, particularly at the morula stage, as has been demonstrated on the basis of in vitro and in vivo development rates after thawing. In this study we compare the ultrastructure of fresh morulae, thawed morulae, and blastocysts cryopreserved with either ethylene glycol or glycerol at the electron microscopic level, to look for cellular damage that could be responsible for proven differences in embryo survival after transfer. Embryos cryopreserved with glycerol showed unequal degrees of conservation even among blastomeres within a single embryo. In morulae, inner blastomeres were completely damaged, whereas external ones appeared to be intact. Both morulae and blastocysts cryopreserved with ethylene glycol showed a higher uniformity in blastomere conservation than embryos with glycerol. The most remarkable features in this experimental group were the presence of desmosomes following tight junctions between blastomeres and the presence of many microvilli on the outer surface of external blastomeres. These characteristics are similar in fresh embryos of the control group. Our results show that ethylene glycol protects membrane and cytoplasmic structures of embryonic cells from cryoinjury much better than glycerol. In vivo survival of embryos confirmed the ultrastructural observations. A limited permeability of glycerol would explain the observed ultrastructural differences in blastomere integrity, which depends on blastomere location and the differences between morulae and blastocysts. We conclude that the low reproductive yield after cryopreservation using glycerol can be attributed to the lack of protection of inner cells.  相似文献   

6.
Tanaka H 《Theriogenology》1999,51(7):1225-1237
This study was conducted to investigate the influence of the timing of blastomere isolation after the removal of nocodazole on the subsequent division of blastomeres and developmental ability of reconstituted bovine embryos. The division rate of isolated blastomeres was examined at 3, 5 and 24 h of culture after nocodazole removal. Furthermore, isolated blastomeres and those of whole embryos were used as donors in nuclear transfer to determine the development of reconstituted embryos. The division rate of isolated blastomeres at 3 h was significantly lower than the presumptive division rate of blastomeres from whole embryos (P<0.05). When these blastomeres were used as donor nuclei, the dividing blastomeres yielded a significantly higher development rate than blastomeres from whole embryos (P<0.05). These results confirm that the timing of blastomere isolation influences the subsequent division of blastomeres and the developmental ability of the reconstituted embryos.  相似文献   

7.
Cell lineages during development of ascidian embryos were analyzed by injecting horseradish peroxidase as a tracer enzyme into identified cells of the 16-cell and 32-cell stage embryos of Halocynthia roretzi. Most of the blastomeres of these embryos developed more kinds of tissues than have hitherto been reported, and therefore, the developmental fates of each blastomere are more complex. It has been thought that every blastomere of the 64-cell stage ascidian embryo gives rise to only one kind of tissues, but the finding that the several blastomeres at the 32-cell stage developed into at least three different kinds of tissues, clearly indicates that the stage at which the fates of every blastomere are determined to one tissue is later than the 64-cell stage. The results also clearly demonstrate that muscle cells are derived not only from B-line cells (B5.1, B5.2, B6.3, and B6.4) but also from A-line cells (A5.2 and A6.4) and b-line cells (b5.3 and b6.5). Based on the present analysis as well as other studies, complete cell lineages of muscle cells up to their terminal differentiation have been proposed. In addition, lineages of nervous system, notochord, and epidermis are also discussed.  相似文献   

8.
Pattern regulation in defect embryos of Xenopus laevis   总被引:4,自引:0,他引:4  
Defect embryos of 24 series were prepared by removing increasing numbers of blastomeres from an 8-cell embryo of Xenopus laevis. They were cultured and their development was examined macroscopically when controls reached a tailbud stage or later. Results show that most of defect embryos of 12 series develop normally, and some of them become normal frogs. Each of these defect embryos contain at least two animal blastomeres, one dorsal, and one ventral blastomere of the vegetal hemisphere. This suggests that a set of these four blastomeres of the three types is essential for complete pattern regulation.  相似文献   

9.
Assessment of nuclear status is important when a biopsied single blastomere is used for embryo sexing. In this study we investigated the nuclear status of blastomeres derived from 8- to 16-cell stage in vitro fertilised bovine embryos to determine the representativeness of a single blastomere for embryo sexing. In 24 embryos analysed, the agreement in sex determination between a biopsied single blastomere and a matched blastocyst by polymerase chain reaction (PCR) was 83.3%. To clarify the discrepancies, karyotypes of blastomeres in 8- to 16-cell stage bovine embryos were analysed. We applied vinblastine sulfate at various concentrations and for different exposure times for metaphase plate induction in 8- to 16-cell stage bovine embryos. The 1.0 mg/ml vinblastine sulfate treatment for 15 h was selected as the most effective condition for induction of a metaphase plate (> 45%). Among 22 embryos under these conditions, only 8 of 10 that had a normal diploid chromosome complement showed a sex chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of the embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four of another 11 embryos with a mixoploid chromosomal complement contained a haploid blastomere with a wrong sex chromosome (18.2%). In conclusion, assessment of nuclear status of 8- to 16-cell stage bovine embryos revealed that morphologically normal embryos had a considerable proportion of mixoploid blastomeres and sex chromosomal mosaicism; these could be the cause of discrepancies in the sex between biopsied single blastomeres and matched blastocysts by PCR.  相似文献   

10.
During the transition from the four- to the eight-cell stage in ctenophore embryos, each blastomere produces one daughter cell with the potential to form comb plate cilia and one daughter cell that does not have this potential. If the second cleavage in a two-cell embryo is blocked, at the next cleavage these embryos frequently form four blastomeres which have the configuration of the blastomeres in a normal eight-cell embryo. At this division there is also a segregation of comb plate-forming potential. By compressing a two-cell embryo in a plane perpendicular to the first plane of cleavage it is possible to produce a four-cell blastomere configuration that is identical to that produced following the inhibition of the second cleavage. However, under these circumstances the segregation of comb plate potential does not occur. These results suggest that the appropriate plane of cleavage must take place for a given cleavage cycle, in order for localizations of developmental potential to be properly positioned within blastomeres.  相似文献   

11.
The first cleavage of the fertilised mouse egg divides the zygote into two cells that have a tendency to follow distinguishable fates. One divides first and contributes its progeny predominantly to the embryonic part of the blastocyst, while the other, later dividing cell, contributes mainly to the abembryonic part. We have previously observed that both the plane of this first cleavage and the subsequent order of blastomere division tend to correlate with the position of the fertilisation cone that forms after sperm entry. But does sperm entry contribute to assigning the distinguishable fates to the first two blastomeres or is their fate an intrinsic property of the egg itself? To answer this question we examined the distribution of the progeny of early blastomeres in embryos never penetrated by sperm - parthenogenetic embryos. In contrast to fertilised eggs, we found there is no tendency for the first two parthenogenetic blastomeres to follow different fates. This outcome is independent of whether parthenogenetic eggs are haploid or diploid. Also unlike fertilised eggs, the first 2-cell blastomere to divide in parthenogenetic embryo does not necessarily contribute more cells to the blastocyst. However, even when descendants of the first dividing blastomere do predominate, they show no strong predisposition to occupy the embryonic part. Thus blastomere fate does not appear to be decided by differential cell division alone. Finally, when the cortical cytoplasm at the site of sperm entry is removed, the first cleavage plane no longer tends to divide the embryo into embryonic and abembryonic parts. Together these results indicate that in normal development fertilisation contributes to setting up embryonic patterning, alongside the role of the egg.  相似文献   

12.
Cellular interactions in early C. elegans embryos   总被引:8,自引:0,他引:8  
J R Priess  J N Thomson 《Cell》1987,48(2):241-250
In normal development both the anterior and posterior blastomeres in a 2-cell C. elegans embryo produce some descendants that become muscles. We show that cellular interactions appear to be necessary in order for the anterior blastomere to produce these muscles. The anterior blastomere does not produce any muscle descendants after either the posterior blastomere or one of the daughters of the posterior blastomere is removed from the egg. Moreover, we demonstrate that a daughter of the anterior blastomere that normally does not produce muscles appears capable of generating muscles when interchanged with its sister, a cell that normally does produce muscles. Embryos develop normally after these blastomeres are interchanged, suggesting that cellular interactions play a major role in determining the fates of some cells in early embryogenesis.  相似文献   

13.
Heat shock proteins (HSPs) indicate exposure to cellular stress and adverse cellular effects, thus serving as biomarkers of these effects. The highly conserved Hsp70 proteins are expressed under proteotoxic conditions, whereas small HSPs are expressed in response to stressors acting on the cytoskeleton and cell signaling pathways. Poeciliopsis lucida hepatocellular carcinoma line 1 (PLHC-1) cells have been used extensively for studying effects of cytotoxicity. A number of assays have been developed to examine DNA levels, protein levels, growth rate, morphological changes, and viability. The boundary between sub-lethal and lethal effects of particular stressors has been determined. The methodology and analytical framework for these techniques along with sample assays using cadmium stressed PLHC-1 cells are described. A range of methodologies have been developed in the past decade that allow the analysis and interpretation of gene expression and function in vivo in zebrafish embryos, and many of these are now being applied to the development of embryotoxicity assays. Here we provide the theoretical background and methodology for utilizing Hsp70 expression as an indicator of toxicity in the zebrafish embryo. Hsp70 expression is activated in a tissue-specific manner in zebrafish larvae following exposure to a number of different toxicants, including cadmium. This has allowed the development of an hsp70/eGFP reporter gene system in stable transgenic zebrafish that serves as a reliable yet extremely quick indicator of cell-specific toxicity in the context of the multicellular, living embryo.  相似文献   

14.
Clonal origins of cells in the pigmented retina of the zebrafish eye   总被引:7,自引:0,他引:7  
Mosaic analysis has been used to study the clonal basis of the development of the pigmented retina of the zebrafish, Brachydanio rerio. Zebrafish embryos heterozygous for a recessive mutation at the gol-1 locus were exposed to gamma-irradiation at various developmental stages to create mosaic individuals consisting of wild-type pigmented cells and a clone of pigmentless (golden) cells in the eye. The contribution of individual embryonic cells to the pigmented retina was measured and the total number of cells in the embryo that contributed descendants to this tissue was determined. Until the 32-cell stage, almost every blastomere has some descendants that participate in the formation of the pigmented retina of the zebrafish. During subsequent cell divisions, up to the several thousand-cell stage, the number of ancestral cells is constant: approximately 40 cells are present that will give rise to progeny in the pigmented retina. Analysis of the size of clones in the pigmented retina indicates that the cells of this tissue do not arise through a rigid series of cell divisions originating in the early embryo. The findings that each cleavage stage cell contributes to the pigmented retina and yet the contribution of such cells is highly variable are consistent with the interpretation that clonal descendants of different blastomeres normally intermix extensively prior to formation of the pigmented retina.  相似文献   

15.
Is it necessary to analyze two blastomeres in preimplantation genetic diagnosis (PGD) by fluorescence in situ hybridization (FISH) or is one blastomere enough, as suggested by some teams? We analyzed the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), false positives (FP), false negatives (FN), and the efficiency (Eff) of FISH performed on one (Group I) or two (Group II) blastomeres. Ninety embryos were analyzed (day 3), 19 blastocysts were replaced (day 5), 64 embryos were reanalyzed (day 5), (Group I = 23; Group II = 41). No differences were observed between the two groups for all of the parameters considered, but one false negative was observed in Group I. Furthermore, two embryos from Group II, which had a discordant diagnosis at PGD (one blastomere being normal and one abnormal), were read as abnormal after reanalysis. The accidental biopsy of the normal blastomere could have lead to the selection of these 2 embryos for transfer, causing a misdiagnosis rate of 4.8%. We conclude that embryo reanalysis is a useful tool to test the reliability of PGD in each laboratory: that PGD on two blastomeres is safer because the practice of PGD on one blastomere can result in a false-negative misdiagnosis.  相似文献   

16.
Summary In Parascaris developmental commitment to the germ line and somatic lineages is indicated by the orientation of the mitotic spindle in blastomeres, the topology of cells in the embryo, and chromatin diminution in presomatic blastomeres. Using three different experimental techniques: transient pressure treatment, application of cytochalasin B, and isolation of blastomeres, we have succeeded in uncoupling several developmental processes during cleavage of P. univalens. The following results were obtained: (1) Following mitotic nondisjunction we observed identical behavior of all chromatids in each blastomere. Thus chromosome differentiation by differential replication does not occur. (2) Chromosome fragments obtained by pressure treatment of egg cells underwent chromatin diminution. Thus this process does not require an intact germ-line chromosome. However, chromosomes immobilized on a monopolar spindle did not undergo chromatin diminution. Thus diminution appears to require segregation of chromatids. (3) Blastomeres that completely lacked chromosomes as a result of mitotic nondisjunction underwent normal early cleavage divisions. (4) Pressure treatment or prolonged treatment with cytochalasin B caused egg cells or germ line blastomeres to lose their germ line quality, as deduced from the coincident occurrence of symmetrical (presomatic-like) cleavage and chromatin diminution. (5) Isolated blastomeres from 2-cell embryos, i.e. 1/2 blastomeres, usually cleaved according to their prospective fates in the whole embryo. However, in some partial embryos derived from such blastomeres, chromatin diminution was delayed for either one or two cleavage mitoses. An activation model as an alternative to a prelocalization model is presented, which can account for early blastomere topogenesis and chromatin diminution.  相似文献   

17.
Changes in the cellular adhesion pattern during the early embryogenesis of a starfish Asterias amurensis were examined using carboxyfluorescein (CF) dye as a probe. CF that was injected into one of the blastomeres at the 2- or 4-cell stage was in all cases restricted to the progeny cells of the CF-labelled blastomere. With the advancement of gastrulation, however, the injected dye was distributed not only to the progeny of the labelled blastomere, but also to cells that originated from non-injected blastomeres. At the beginning of mesenchyme cell release, the injected dye spread uniformly to most cells comprising the embryo. When one of the blastomeres situated in the vegetal hemisphere of an 8-cell embryo was labelled, the resulting embryo showed more intense fluorescence in the cells surrounding the archenteron than in the ectodermal layer, suggesting that the cells in ectodermal layer became associated more intimately or earlier than those surrounding the archenteron. Likewise, in double embryos formed by combining two denuded eggs, in which one egg had been labelled with CF, dye spread was observed when the ectodermal layer began to expand. The intercellular spread of CF dye in starfish embryo suggests that there is a dramatic change in the cellular adhesion pattern during the course of gastrulation.  相似文献   

18.
19.
Because growth and development are processes sensitive to the action of many chemicals, bioassays that screen for developmental toxicants may be more indicative of chronic effects than acute toxicity assays. FETAX is a 96 h whole embryo static renewal test employing the embryos of the frog Xenopus laevis. Endpoints are mortality, malformation and growth. Because of the frog's fecundity, its extensive use in basic research and the ability to obtain embryos year-round, it is an ideal organism to use in screening for developmental toxicants. By validating using known mammalian teratogens and the use of rat liver microsomes to stimulate mammalian metabolism, we have extended the use of the system for the prescreening of human developmental toxicants. In past validation work, we have correctly identified the teratogenicity of 15 to 17 compounds used in validation for a predictive accuracy of approximately 88%. In the present study, the ability of FETAX to detect developmental toxicants in groundwater samples taken from an industrial waste dump was evaluated. FETAX showed that it was sensitive enough to detect developmental toxicants in samples without prior concentration. In some samples, less than half the LC50 concentration was required to cause significant malformation. In some cases, a dose-response curve was not obtainable but the test results nonetheless indicated some developmental toxicity. The results of this study indicate that it is necessary to routinely screen for developmental toxicants when establishing water quality criteria for the preservation of species and for human health.  相似文献   

20.
Examination of early development in five species of the Patiriella sea star species complex indicates that the ancestral-type radial holoblastic cleavage (Type I) is characteristic of P. regularis and P. exigua, whereas cleavage in species from the calcar clade followed multiple alternatives (Types II-IV) from holoblastic to meroblastic. Considering that invariant radial cleavage is thought to play a role in embryonic axis formation in echinoderms, we documented the details of blastomere formation in Patiriella sp. and followed development of the embryos. In Type II cleavage, the first and second cleavage planes appeared simultaneously at one pole of the embryo, dividing it directly into four equally sized blastomeres. In Type III cleavage, the first and second cleavage planes appeared simultaneously, followed promptly by the third cleavage plane, dividing the embryo directly into eight equally sized blastomeres. In Type IV cleavage, numerous furrows appeared simultaneously at one end of the embryo, dividing it into 32-40 equally sized blastomeres. Confocal sections revealed that embryos with cleavage Types II-IV were initially syncytial. The timing of karyokinesis in embryos with Types II and III cleavage was similar to that seen in clutch mates with Type I cleavage. Karyokinesis in embryos with Type IV cleavage, however, differed in timing compared with Type I clutch mates. Alteration in cleavage was not associated with polarized distribution of maternally provided nutrients. For each cleavage type, development was normal to the competent larval stage. Although variable blastomere configuration in the calcar clade may be linked to possession of a lecithotrophic development, other Patiriella species with this mode of development have typical cleavage. The presence of variable cleavage in all calcar clade species indicates that phylogenetic history has played a role in the distribution of this embryonic trait in Patiriella. The plasticity in early cleavage in these sea stars indicates that this aspect of early development is not constrained against change and that there are many ways to achieve multicellularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号