首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
PML与基因组稳定性   总被引:3,自引:0,他引:3  
基因组稳定性同肿瘤的发生、发展密切相关,维护基因组稳定性对于细胞行使正常的生理功能是至关重要的.早幼粒细胞白血病蛋白PML(promyelocytic leukemia)主要借助分子中RBCC结构,同近50种有重要功能的蛋白相互作用而形成PML-NBs(PML nuclear bodies).PML-NBs是与核基质结合的、动态的、亚核多蛋白复合物,它作为区室化核结构(compartmentalized nuclear architecture)——染色质间区室(interchromatin compartment)的功能单位,满足了真核基因高层次表达调控模式的时空要求.最新的研究证明:PML是基因组稳定性“守门人”——p53分子的搭档分子,同样在基因组稳定性调控中发挥着重要的功能作用.它协同p53参与了DNA损伤反应所诱发的细胞凋亡,还可组织多种DNA修复分子参与DNA损伤修复,在DNA损伤反应中具有重要作用;此外,PML还通过调控aurora A的活性参与中心体复制检查点调控,借助调控survivin的表达参与有丝分裂纺锤体组装检查点调控,在染色体复制和细胞分裂中均显示了重要的调控作用.而当PML表达缺失或不足时则与多种肿瘤的发生、发展相关联,因此PML分子在维护基因组稳定性中具有重要功能作用,本文仅就相关的最新研究进展予以概述  相似文献   

5.
6.
Promyelocytic leukemia protein (PML), a tumor suppressor, forms in most human cell types discrete multiprotein complexes termed PML nuclear bodies. Here, we have used indirect immunofluorescence and confocal microscopy to describe various forms of a novel nuclear PML compartment associated with nucleoli that is found under growth-permitting conditions in human mesenchymal stem cells (hMSC) and skin fibroblasts but not in several immortal cell lines with defects in the p53 and pRb pathways. In addition, we found that shut-off of rRNA synthesis induced by actinomycin D causes PML translocation to the surface of segregated nucleoli. This translocation is dynamic and reversible, following changes in nucleolar activity. Intriguingly, treatment causing premature senescence restores PML binding to nucleoli-derived structures and to the surface of segregated nucleoli in HeLa cells. These findings indicate that PML may be involved in nucleolar functions of normal non-transformed or senescent cells. The absence of nucleolar PML compartment in rapidly growing tumor-derived cells suggests that PML association with the nucleolus might be important for cell-cycle regulation.  相似文献   

7.
Receptogram analysis was compared with three other imaging strategies for immunocytochemical assay of estrogen receptors. These included nuclear-specific methods for analysis of nuclear integrated optical density (IOD) or mean optical density (MOD) histograms, and field-specific methods, where the pixel optical density (POD) histogram was evaluated for the composite nuclear phase. Measurements in culture and in breast cancer cryosections were treated separately to isolate geometric considerations. In culture receptograms the modality of IOD and MOD histograms and their bivariate contour maps revealed one, two, or more subpopulations with discrete receptor content and concentration. However, when the field of nuclei was imaged as a whole, regardless of the number of subpopulations, POD histograms showed two minima, defining three intranuclear phases. This was due to mottling and variegation of intranuclear chromatin and nucleolar immunostaining and not to differences between nuclei. These limitations were also revealed in breast cancer sections. In POD histograms, % unstained pixels did not provide a reliable estimate of % receptor negative nuclei, as determined by their enumeration. In sections, correction of IOD for nuclear volume variability was essential to suppress artifactual peaks not representing differences in receptor content. This was achieved by multiplying nuclear IOD by the spherical nuclear radius (S) of individual slab sections. Peaks of IOD(S) then reflected receptor content on a true ratio scale. Only receptogram analysis, which incorporates these strategies, permitted objective evaluation of receptor heterogeneity at the level of tumor subpopulations.  相似文献   

8.
9.
Promyelocytic leukemia protein (PML) nuclear bodies are dynamic and heterogeneous nuclear protein complexes implicated in various important functions, most notably tumor suppression. PML is the structural component of PML nuclear bodies and has several nuclear splice isoforms that share a common N-terminal region but differ in their C termini. Previous studies have suggested that the coiled-coil motif within the N-terminal region is sufficient for PML nuclear body formation by mediating homo/multi-dimerization of PML molecules. However, it has not been investigated whether any of the C-terminal variants of PML may contribute to PML body assembly. Here we report that the unique C-terminal domains of PML-II and PML-V can target to PML-NBs independent of their N-terminal region. Strikingly, both domains can form nuclear bodies in the absence of endogenous PML. The C-terminal domain of PML-II interacts transiently with unknown binding sites at PML nuclear bodies, whereas the C-terminal domain of PML-V exhibits hyperstable binding to PML bodies via homo-dimerization. This strong interaction is mediated by a putative α-helix in the C terminus of PML-V. Moreover, nuclear bodies assembled from the C-terminal domain of PML-V also recruit additional PML body components, including Daxx and Sp100. These observations establish the C-terminal domain of PML-V as an additional important contributor to the assembly mechanism(s) of PML bodies.  相似文献   

10.
Megakaryocytes (Mks) are unique cells in the human body in that they carry a single and polyploid nucleus. It is therefore of interest to understand their nuclear ultrastructure. PML oncogenic domains (PODs) were described in several types of eukaryotic cells using human autoantibodies which recognize nuclear antigens with a specific speckled pattern (dots) in indirect immunofluorescence (IF). Two main antigens, PML and Sp 100, usually colocalize and concentrate in these nuclear subdomains. We investigated the presence of PODs using IF and immunoelectron microscopy (IEM) in cells from megakaryocytic lineage: the HEL cell line and human cultured Mks. Antibodies against PML, Sp100, and anti-nuclear dots were used in single and double labeling. PODs were identified in HEL cells and in human Mks, and their ultrastructure was characterized. We then used IF to quantify PODs within Mks and showed that their number increased proportionally to nuclear lobularity. In summary, we report the identification of PODs in human Mks at an ultrastructural level and an increase in PODs number in parallel with Mk ploidy. We show that endomitosis not only leads to DNA increase but also to the multiplication of at least one of the associated nuclear structures.  相似文献   

11.
12.
Immediate early gene X1 (IEX-1) represents a stress response gene involved in growth control and modulation of apoptosis. Here, we report a detailed analysis of IEX-1 with respect to its intracellular localization. By means of confocal laser scanning microscopy, a green fluorescent protein-IEX-1 fusion protein transfected into HeLa cells, as well as endogenous IEX-1, could be detected in distinct subnuclear structures. This particular subnuclear localization of IEX-1 was not observed with a green fluorescent protein-IEX-1 fusion protein lacking a putative nuclear localization sequence, along with a decreased effect on apoptosis. Double immunofluorescence staining revealed a partial co-localization of endogenous promyelocytic leukemia protein (PML) and IEX-1 in these subnuclear structures. Nuclear localization of IEX-1 is also enhanced upon treatment of cells with leptomycin B, an inhibitor of the nuclear exporter CRM1. These observations indicate that IEX-1 is specifically shuttled to and from the nucleus. Overexpression experiments using PML isoforms III and IV revealed distinct intranuclear interaction of IEX-1 and PML. Coprecipitation experiments showed physical interaction between IEX-1 and PML. The close structural relation of IEX-1-containing nuclear subdomains and PML nuclear bodies suggests a function of IEX-1 related to the multiple functions of these unique subnuclear regions, particularly during stress response and growth control.  相似文献   

13.
The major immediate-early (MIE) gene products of human cytomegalovirus (HCMV) are nuclear phosphoproteins that are thought to play key roles in initiating lytic cycle gene regulation pathways. We have examined the intranuclear localization pattern of both the IE1 and IE2 proteins in virus-infected and DNA-transfected cells. When HCMV-infected human diploid fibroblast (HF) cells were stained with specific monoclonal antibodies, IE1 localized as a mixture of nuclear diffuse and punctate patterns at very early times (2 h) but changed to an exclusively nuclear diffuse pattern at later times. In contrast, IE2 was distributed predominantly in nuclear punctate structures continuously from 2 to at least 12 h after infection. These punctate structures resembled the preexisting PML-associated nuclear bodies (ND10 or PML oncogenic domains [PODs]) that are disrupted and dispersed by the IE110 protein as a very early event in herpes simplex virus (HSV) infection. However, HCMV differed from HSV by leading instead to a change in both the PML and SP100 protein distribution from punctate bodies to uniform diffuse patterns, a process that was complete in 50% of the cells at 2 h and in 90% of the cells by 4 h after infection. Confocal double-label indirect immunofluorescence assay analysis confirmed that both IE1 and IE2 colocalized transiently with PML in punctate bodies at very early times after infection. In transient expression assays, introduction of IE1-encoding plasmid DNA alone into Vero or HF cells produced the typical total redistribution of PML into a uniform nuclear diffuse pattern together with the IE1 protein, whereas introduction of IE2-encoding plasmid DNA alone resulted in stable colocalization of the IE2 protein with PML in the PODs. A truncated mutant form of IE1 gave large nuclear aggregates and failed to redistribute PML, and similarly a deleted mutant form of IE2 failed to colocalize with the punctate PML bodies, confirming the specificity of these effects. Furthermore, both Vero and U373 cell lines constitutively expressing IE1 also showed total PML relocalization together with the IE1 protein into a nuclear diffuse pattern, although a very small percentage of the cells which failed to express IE1 reverted to a punctate PML pattern. Finally, the PML redistribution activity of IE1 and the direct association of IE2 with PML punctate bodies were both confirmed by infection with E1A-negative recombinant adenovirus vectors expressing either IE1 or IE2 alone. These results confirm that transient colocalization with and disruption of PML-associated nuclear bodies by IE1 and continuous targeting to PML-associated nuclear bodies by IE2 are intrinsic properties of these two MIE regulatory proteins, which we suggest may represent critical initial events for efficient lytic cycle infection by HCMV.  相似文献   

14.
15.
The promyelocytic leukemia (PML) protein is a tumor suppressor that has an important role in several cellular processes, including apoptosis, viral infection, DNA damage repair, cell cycle regulation, and senescence. PML is an essential component of sub-nuclear structures called PML nuclear bodies (NBs). Our laboratory has previously demonstrated that the peptidyl-prolyl cis-trans isomerase, Pin1, binds and targets PML for degradation in a phosphorylation-dependent manner. To further elucidate the mechanisms underlying Pin1-mediated PML degradation, we aimed to identify one or more factors that promote PML phosphorylation. Here we show that treatment with U0126, an inhibitor of the ERK2 upstream kinases MEK1/2, leads to an increase in PML protein accumulation and an inhibition of the interaction between Pin1 and PML in MDA-MB-231 breast cancer cells. Consistent with this observation, phosphorylated ERK2 partially co-localized with PML NBs. Although U0126 up-regulated exogenous wild-type PML levels, it did not have an effect on the steady-state level of a mutant form of PML that is defective in binding Pin1. In addition, exogenous wild-type, but not Pin1 binding-defective PML protein expression levels were decreased by overexpression of ERK2. In contrast, knockdown of ERK2 by siRNA resulted in an increase in PML protein levels and an increase in the formation of PML NBs. Using phospho-specific antibodies, we identified Ser-403 and Ser-505 as the ERK2 targets that promote Pin1-mediated PML degradation. Finally, we demonstrated that EGF induced activation of ERK and interaction between PML and phosphorylated ERK resulting in a decrease in PML protein levels. Taken together, our results support a model in which Pin1 promotes PML degradation in an ERK2-dependent manner.  相似文献   

16.
17.
Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson–Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot‐like PML NBs are reorganized into thread‐like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co‐immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread‐like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno‐TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB‐associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread‐like PML NBs might be a novel, morphological, and functional biomarker of late senescence.  相似文献   

18.
Previously we reported that the expression of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARα) fusion gene, which is caused by specific translocation (15;17) in acute promyelocytic leukemia, can enhance constitutive autophagic activity in leukemic and nonleukemic cells, and PML overexpression can sequestrate part of microtubule-associated protein light chain 3 (LC3) protein in PML nuclear bodies, suggesting that LC3 protein also distributes into nuclei although it is currently thought to function primarily in the cytoplasm, the site of autophagosomal formation. However, its potential significance of nucleoplasmic localizations remains greatly elusive. Here we demonstrate that PML interacts with LC3 in a cell type-independent manner as assessed by Co-IP assay and co-localization observation. Overexpressed PML significantly coprecipitates with endogenous and nuclear LC3 protein. Furthermore, a fraction of endogenous PML protein is found to be co-localized with LC3 protein under steady state condition, which is further enhanced by IFNα induction, indicating that PML up-regulation potentiates this interaction. Additionally, DsRed-PML associates with EGFP-LC3 during telophase and G1 phase but not in metaphase and anaphase. Two potential LC3-interacting region (LIR) motifs in PML are required for interaction of PML with LC3 while this association is independent of autophagic activity. Finally, we show that interaction between PML and LC3 contributes to cell growth inhibition function of PML. Considering that PML is an important tumor suppressor, we propose that nuclear portion of LC3 protein may associate with PML to control cell growth for prevention and inhibition of cancer occurrence and development.  相似文献   

19.
The promyelocytic leukemia protein (PML) forms nuclear bodies which are altered in some disease conditions. We report that the cytoplasmic RNA virus lymphocytic choriomeningitis virus (LCMV) influences the distribution of PML bodies. In cells infected with LCMV, the Z protein and PML form large bodies primarily in the cytoplasm. Transient transfection studies indicate that Z alone is sufficient to redistribute PML to the cytoplasm and that PML and Z colocalize. Coimmunoprecipitation studies show specific interaction between PML and Z proteins. A similar result was observed with a Z protein from another arenavirus, Lassa virus, suggesting that this is a general feature of the Arenaviridae. Genetically engineered mutations in PML were used to show that the Z protein binds the N-terminal region of PML and does not need the PML RING or the nuclear localization signal to colocalize. The Z protein acts dominantly to overcome the diffuse phenotype observed in several PML mutants. The interaction between PML and Z may influence certain unique characteristics of arenavirus infection.  相似文献   

20.
Acute promyelocytic leukaemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and the retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex (termed ND10, Kr bodies, nuclear bodies, PML oncogenic domains or PODs) which is disrupted in the APL disease state. PML contains a number of characterized motifs including a Zn2+ binding domain called the RING or C3HC4 finger. Here we describe the solution structure of the PML RING finger as solved by 1H NMR methods at physiological pH with r.m.s. deviations for backbone atoms of 0.88 and 1.39 A for all atoms. Additional biophysical studies including CD and optical spectroscopy, show that the PML RING finger requires Zn2+ for autonomous folding and that cysteines are used in metal ligation. A comparison of the structure with the previously solved equine herpes virus IE110 RING finger, shows significant differences suggesting that the RING motif is structurally diverse. The role of the RING domain in PML nuclear body formation was tested in vivo, by using site-directed mutagenesis and immunofluorescence on transiently transfected NIH 3T3 cells. Independently mutating two pairs of cysteines in each of the Zn2+ binding sites prevents PML nuclear body formation, suggesting that a fully folded RING domain is necessary for this process. These results suggest that the PML RING domain is probably involved in protein-protein interactions, a feature which may be common to other RING finger domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号