首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung fibrosis involves the overexpression of ECM proteins, primarily collagen, by alpha-smooth muscle actin (ASMA)-positive cells. Caveolin-1 is a master regulator of collagen expression by cultured lung fibroblasts and of lung fibrosis in vivo. A peptide equivalent to the caveolin-1 scaffolding domain (CSD peptide) inhibits collagen and tenascin-C expression by normal lung fibroblasts (NLF) and fibroblasts from the fibrotic lungs of scleroderma patients (SLF). CSD peptide inhibits ASMA expression in SLF but not NLF. Similar inhibition of collagen, tenascin-C, and ASMA expression was also observed when caveolin-1 expression was upregulated using adenovirus. These observations suggest that the low caveolin-1 levels in SLF cause their overexpression of collagen, tenascin-C, and ASMA. In mechanistic studies, MEK, ERK, JNK, and Akt were hyperactivated in SLF, and CSD peptide inhibited their activation and altered their subcellular localization. These studies and experiments using kinase inhibitors suggest many differences between NLF and SLF in signaling cascades. To validate these data, we determined that the alterations in signaling molecule activation observed in SLF also occur in fibrotic lung tissue from scleroderma patients and in mice with bleomycin-induced lung fibrosis. Finally, we demonstrated that systemic administration of CSD peptide to bleomycin-treated mice blocks epithelial cell apoptosis, inflammatory cell infiltration, and changes in tissue morphology as well as signaling molecule activation and collagen, tenascin-C, and ASMA expression associated with lung fibrosis. CSD peptide may be a prototype for novel treatments for human lung fibrosis that act, in part, by inhibiting the expression of ASMA and ECM proteins.  相似文献   

2.
Knock-out of the gene coding for caveolin-1, the main organizer of caveolae, has not yet been performed. We devised a strategy to knock-down caveolin-1 gene expression using antisense oligodeoxynucleotides (ODNs). Seven ODNs, covering different regions of caveolin-1 mRNA, were screened by Western blot analysis of caveolin-1 levels. The most active and specific was found to reduce caveolin-1 protein levels by 70% at 1 microM concentration and its action, as demonstrated by a marked reduction (about 50%) in caveolin-1 mRNA levels, was due to a true antisense mechanism. In HUVEC treated with the active ODN, caveolae were undetectable by confocal and electron microscopy, while their number was not affected when cells were treated with a scrambled ODN. Using the fibrin gel 3 D angiogenesis test we established that the active (but not the scrambled) ODN strongly suppressed capillary-like tube formation. Moreover, an antisense tailored against chicken caveolin-1 mRNA, when tested using the chorio-allantoic membrane technique, dramatically reduced vessel formation at doses (10-20 microg) under which control ODNs were ineffective and devoid of toxicity. Thus, it is likely that caveolin-1 down regulation, followed by caveolae disruption, impairs angiogenesis in vitro and in vivo.  相似文献   

3.
HDL-mediated reverse-cholesterol transport as well as phosphoinositide signaling are mediated through plasma membrane microdomains termed caveolae/lipid rafts. However, relatively little is known regarding mechanism(s) whereby these lipids traffic to or are targeted to caveolae/lipid rafts. Since sterol carrier protein-2 (SCP-2) binds both cholesterol and phosphatidylinositol, the possibility that SCP-2 might interact with caveolin-1 and caveolae was examined. Double immunolabeling and laser scanning fluorescence microscopy showed that a small but significant portion of SCP-2 colocalized with caveolin-1 primarily at the plasma membrane of L-cells and more so within intracellular punctuate structures in hepatoma cells. In SCP-2 overexpressing L-cells, SCP-2 was detected in close proximity to caveolin, 48 +/- 4 A, as determined by fluorescence resonance energy transfer (FRET) and immunogold electron microscopy. Cell fractionation of SCP-2 overexpressing L-cells and Western blotting detected SCP-2 in purified plasma membranes, especially in caveolae/ lipid rafts as compared to the nonraft fraction. SCP-2 and caveolin-1 were coimmunoprecipitated from cell lysates by anti-caveolin-1 and anti-SCP-2. Finally, a yeast two-hybrid assay demonstrated that SCP-2 directly interacts with caveolin-1 in vivo. These interactions of SCP-2 with caveolin-1 were specific since a functionally related protein, phosphatidyinositol transfer protein (PITP), colocalized much less well with caveolin-1, was not in close proximity to caveolin-1 (i.e., >120 A), and was not coimmunoprecipitated by anti-caveolin-1 from cell lysates. In summary, it was shown for the first time that SCP-2 (but not PITP) selectively interacted with caveolin-1, both within the cytoplasm and at the plasma membrane. These data contribute significantly to our understanding of the role of SCP-2 in cholesterol and phosphatidylinositol targeted from intracellular sites of synthesis in the endoplasmic reticulum to caveolae/lipid rafts at the cell surface plasma membrane.  相似文献   

4.
Caveolins are the principal protein component of caveolae, plasma membrane invaginations found in most cell types. Caveolin-1 (Cav-1) plays a major role in oncogenesis through its various functions in lipid transport, membrane trafficking, and signal transduction. Increased expression of Cav-1 in tumor cells has been associated with aggressiveness and poor survival. More recently, loss of stromal Cav-1 expression was linked to poor survival and increased metastatic potential in breast and prostate cancer. To date, there is no study addressing the clinical significance of Cav-1 expression in malignant melanoma (MM). Our study consisted of 44 cases of MM: 12 MM lymph node metastases from patients with short survival, 12 MM lymph node metastases from patients with long survival and 20 primary MM. All cases were stained with Cav-1 antibodies. Cav-1 expression in melanoma and stromal cells was quantified using a 3 point scale: 0=no staining, 1=diffuse weak staining or strong staining in  相似文献   

5.
We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0–100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose‐ and time‐dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the alternation of other intracellular organelles, although F‐actin structure was slightly disturbed. Apparent ultrastructure alternation with increased autophagosome and autolysosome accumulation was observed in aurantiamide acetate‐treated cells. The expression of LC3‐II was greatly up‐regulated in cells exposed to aurantiamide acetate (P < 0.05 compared with control). The cytoplasmic accumulation of autophagosomes and autolysosomes induced by aurantiamide acetate treatment was confirmed by fluorescent reporter protein labelling. Administration of chloroquine (CQ), which inhibits the fusion step of autophagosomes, further increased the accumulation of autophagosomes in the cytoplasm of U87 cells. Autophagy inhibition by 3‐methyladenine, Bafilomycin A1 or CQ had no influence on aurantiamide acetate‐induced cytotoxicity, whereas autophagy stimulator rapamycin significantly suppressed aurantiamide acetate‐induced cell death. The anti‐tumour effects of aurantiamide acetate were further evaluated in tumour‐bearing nude mice. Intratumoural injection of aurantiamide acetate obviously suppressed tumour growth, and increased number of autophagic vacuoles was observed in tumour tissues of animals receiving aurantiamide acetate. Our findings suggest that aurantiamide acetate may suppress the growth of malignant gliomas by blocking autophagic flux.  相似文献   

6.
Caveolae and caveolins, structural components of caveolae, are associated with specific ion channels in cardiac myocytes. We have previously shown that P2X purinoceptor 7 (P2X7R), a ligand-gated ion channel, is increased in atrial cardiomyocytes of caveolin-1 knockout mice; however, the specific biochemical relationship of P2X7R with caveolins in the heart is not clear. The aim of this work was to study the presence of the P2X7R in atrial cardiomyocytes and its biochemical relationship to caveolin-1 and caveolin-3. Caveolin isoforms and P2X7R were predominantly localized in buoyant membrane fractions (lipid rafts/caveolae) prepared from hearts using detergent-free sucrose gradient centrifugation. Caveolin-1 knockout mice showed normal distribution of caveolin-3 and P2X7R to buoyant membranes indicating the importance of caveolin-3 to formation of caveolae. Using clear native-PAGE, we showed that caveolin-1, -3 and P2X7R contribute to the same protein complex in the membranes of murine cardiomyocytes and in the immortal cardiomyocyte cell line HL-1. Western blot analysis revealed increased caveolin-1 and -3 proteins in tissue homogenates of P2X7R knockout mice. Finally, tissue homogenates of atrial tissues from caveolin-3 knockout mice showed elevated mRNA for P2X7R in atria. The colocalization of caveolins with P2X7R in a biochemical complex and compensated upregulation of P2X7R or caveolins in the absence of any component of the complex suggests P2X7R and caveolins may serve an important regulatory control point for disease pathology in the heart.  相似文献   

7.
8.
Rap1, which is closely related to ras, plays a key role in T-cell receptor (TCR)-signaling. TCR-stimulation without costimulation leads to constitutively activated rap1, which may mediate T-cell anergy via inhibition of ras-dependent induction of extracellular signal-regulated kinases (ERK). This activation is mediated by a second protein kinase b-Raf. Rap1-GTP is thought to activate ERK in a ras-independent manner by binding b-raf. Generally, T cells do not express b-raf while they express the adaptor protein raf-1, which is usually sequestered by rap1 leading to inhibition of ras-mediated ERK activation. In this study, we demonstrate that in rap1-deficient T cells, signaling by the ERK and p38 kinases is increased following activation by different stimuli leading to increased intracellular accumulation and secretion of cytokines. In addition, in a hypersensitivity model rap1-deficient mice demonstrated reduced contact dermatitis compared to wildtype mice, demonstrating the impact of rap1-deficiency on the inflammatory response in vivo.  相似文献   

9.
10.
Caveolin-1在不同肿瘤中发挥作用不同,既发挥抑癌基因样作用又发挥癌基因样作用.旨在分析caveolin-1 在小鼠肝癌细胞系中的表达情况及建立稳定表达外源caveolin-1的Hepa1-6细胞.利用RT-PCR和Western-blot方法检测caveolin-1在小鼠肝癌H22、Hea-F和Hepa1-6细胞中的表达;通过分子克隆构建小鼠caveolin-1 cDNA真核表达栽体,利用脂质体转染等方法建立稳定表达外源caveolin-1的Hepa1-6细胞株;通过RT-PCR、Western-blot、免疫细胞化学等方法鉴定其稳定表达细胞株.结果显示,caveolin-1在Hepa1-6细胞中表达呈阴性,在H22和Hca-F 中高表达;成功获得小鼠caveolin-1 cDNA真核表达载体pEGFP-N2/Cav-1,筛选并鉴定出高表达外源caveolin-1的Hepa1-6稳定细胞株C1和C4,为进一步分析caveolin-1在肝癌中所发挥的作用奠定了一定的研究基础.  相似文献   

11.
Differential expression of caveolin-3 in mouse smooth muscle cells in vivo   总被引:3,自引:0,他引:3  
Expression of caveolin-1 and -3 in mouse smooth muscle cells in vivo was examined by immunohistochemistry. Caveolin-1 was detected in almost all smooth muscles examined, except for the pupillary dilator muscle, whereas caveolin-3 was present only in smooth muscles of some specific tissues. In the eye, the pupillary sphincter muscle was intensely positive for caveolin-3, whereas the ciliary muscle and pupillary dilator muscle were negative. In the gastrointestinal tract, caveolin-3 was detected in the inner circular layer, but not in the outer longitudinal layer. Vascular smooth muscle cells of the resistance-sized artery in the uterus and corpus cavernosum were intensely positive for caveolin-3, whereas those of the aorta were only weakly positive and those of the vena cava were negative. Caveolin-3 was also detected in smooth muscle cells of the urinary bladder, ureter, prostatic vas deferens, and seminal vesicle. The different levels of caveolin-3 expression among various smooth muscle tissues were confirmed by Western blot analysis. Even within the same muscle, the relative expression levels of caveolin-1 and -3 were variable among neighboring cells, suggesting distinct fine regulation of expression of these two caveolins. Moreover, even in the same cell, caveolin-1 and -3 showed different distributions. These results indicate that the two caveolins form distinct caveolae in smooth muscles, and that caveolin-1 and -3 serve different functions. Their differential expression may therefore be related to the functional diversity of smooth muscles. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of the Japanese Government.  相似文献   

12.
Caveolin-1在不同肿瘤中发挥作用不同,既发挥抑癌基因样作用又发挥癌基因样作用。旨在分析caveolin-l在小鼠肝癌细胞系中的表达情况及建立稳定表达外源caveolin-1的Hepal-6细胞。利用RT-PCR和Western-blot方法检测caveolin-1在小鼠肝癌H22、Hca-F和Hepal-6细胞中的表达;通过分子克隆构建小鼠caveolin-1 cDNA真核表达载体,利用脂质体转染等方法建立稳定表达外源caveolin-1的Hepal-6细胞株;通过RT-PCR、Western-blot、免疫细胞化学等方法鉴定其稳定表达细胞株。结果显示,caveolin-l在Hepal-6细胞中表达呈阴性,在H22和Hca-F中高表达;成功获得小鼠caveolin-1 cDNA真核表达载体pEGFP-N2/Cav-1,筛选并鉴定出高表达外源caveolin-1的Hepal-6稳定细胞株Cl和C4,为进一步分析caveolin-1在肝癌中所发挥的作用奠定了一定的研究基础。  相似文献   

13.
14.
In hypogravity conditions unloading of skeletal muscle fibres causes alterations in skeletal muscle structure and functions including growth, gene expression, cell differentiation, cytoskeletal organization, contractility and plasticity. Recent studies have identified sphingosine I -phosphate (SPP) as a lipid mediator capable of eliciting intracellular Ca2+ transients, cell proliferation, differentiation, suppression of apoptosis, as well as cell injury repair. The aim of this research is to evaluate a possible involvement of SPP in skeletal muscle cells differentiation and repair from space-flight damage. Particularly, we investigated the Ca2+ sources and the changes on the cytoskeletal rearrangement induced by SPP in a mouse skeletal (C2C12) myoblastic cell line. Confocal fluorescence imaging revealed that SPP elicited Ca2+ transients which propagated throughout the cytosol and nucleus. This response required extracellular and intracellular Ca2+ mobilization. SPP also induced cell contraction through a Ca2(+)- independent/Rho-dependent pathway. The nuclear Ca2+ transients are suggestive for an action of SPP in the differentiation program and damage repair.  相似文献   

15.
The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression.  相似文献   

16.
Caveolin-1 (CAV-1) is the main structural component of caveolae, acting as a modulator of signal transduction. CAV-1 might be involved in the pathophysiology of microvascular complications in Type 1 diabetes (DM). We sought to determine whether fractionation on sucrose gradient (SF), a method routinely utilized for isolation of caveolar fractions in homogenous cell lines, is applicable for CAV-1-related studies in tissues with multiple cell types, such as the normal rat kidney cortex (C). Using this method, we also determined whether streptozotocin-induced DM in rats (4-week duration) leads to changes in renal subcellular targeting of CAV-1, and evaluated the effects of tight metabolic control (insulin, 12 IU/day) and angiotensin receptor blocker, losartan (4 weeks, 20 mg/kg/day). Immunoblotting of individual fractions obtained from C revealed CAV-1 expression in fractions 4-6 that corresponded to light scattering band that typically forms after separating cellular fractions on SF. These fractions were considered to be caveolar fractions. In C, CAV-1 was also detectable in fractions 8-10. These and all other fractions except caveolar fractions were considered to be non-caveolar fractions. A ratio of caveolar/non-caveolar expression of CAV-1 (CNCR) was computed for each renal cortex allowing comparisons of CAV-1 subcellular distribution in C and DM rats, and effects of treatments. Using this approach, DM was characterized by marked increases in CNCR as compared to C (5.54+/-1.56 vs. 2.65+/-1.33, p<0.05) that were reduced by treatment with insulin (0.78+/-0.24, p<0.01 vs. DM) or losartan (0.84+/-0.06, p<0.01 vs. DM). In summary, analysis of CAV-1 following the SF of renal cortex detected similar distribution of the protein as in homogenous cell lines, DM-induced changes in CAV-1 targeting, and the effects of pharmacological treatments. This suggests applicability of SF in studies focusing on CAV-1 targeting in organs with various cell lines in vivo.  相似文献   

17.
18.
Members of the caveolin family played important roles during fundamental cellular processes,such as regulation of cell morphology,migration,and gene expression in muscle cells.In this study,caveolin-1 (Cav-1),one of the caveolins,was identified from longissimus dorsi muscle of Large Yorkshire pig and Chinese indigenous Lantang pig based on the results of mRNA differential display analysis.The deduced amino acids sequence of the porcine Cav-1 contained a caveolin domain,and was very conservative among different species.The Cav-1 mRNA was widely expressed in the eight tissues in this study,including heart,liver,kidney,encephalon,spleen,lung,longissimus dorsi muscle,and back fat, and the highest expression quantity was found in back fat of the two pig breeds.The expression quantity of porcine Cav-1 in back fat and longissimus dorsi muscle of Lantang pig was significantly higher than that of Large Yorkshire(P<0.01,and P<0.05,respectively).These results suggested that the Cav-1 might be a candidate gene for carcass traits,and might provide valuable information for understanding the mechanism of caveolae signaling in fat deposition by using the animal model of pig.  相似文献   

19.
GD1a was previously shown responsible for regulating cell motility, cellular adhesiveness to vitronectin, phosphorylation of c-Met and metastatic ability of mouse FBJ osteosarcoma cells. To determine the particular molecules regulated by GD1a, FBJ cells were assessed for tumor-related gene expression by semi-quantitative RT-PCR. Caveolin-1 and stromal interaction molecule 1 (Stim1) expression in FBJ-S1 cells, rich in GD1a, were found to be 6 and 4 times as much, respectively, than in FBJ-LL cells devoid of GD1a. Enhanced production of caveolin-1 in protein was confirmed by Western blotting. A low-metastatic FBJ-LL cell variant, having high GD1a expression through β1-4GalNAcT-1 (GM2/GD2 synthase) cDNA transfection (Hyuga S, et al, Int J Cancer 83: 685-91, 1999), showed enhanced production of caveolin-1 and Stim1 in mRNA and protein, compared to mock-transfectant M5. Incubation of FBJ-M5 cells with exogenous GD1a augmented the expression of caveolin-1 in mRNA and protein and Stim1 in mRNA as well. Treatment of FBJ-S1 with fumonisin B1, an inhibitor of N-acylsphinganine synthesis, for 15 days caused the complete depletion of gangliosides and suppressed the expression of caveolin-1 and Stim1. St3gal5 siRNA transfected cells showed decreased expression of caveolin-1 and Stim1 mRNA, as well as St3gal5 mRNA. These findings clearly indicate ganglioside GD1a to be involved in the regulation of the transformation suppressor genes, caveolin-1 and Stim1. Moreover, treatment with GD1a of mouse melanoma B16 cells and human hepatoma HepG2 cells brought about elevated expression of caveolin-1 and Stim1. Li Wang and Shizuka Takaku are equal contributors to the present work  相似文献   

20.
Campbell L  Gumbleton M 《IUBMB life》2000,50(6):361-364
A preliminary retrospective immunocytochemical study was conducted examining the expression of caveolin-1 in skin biopsies resected from clinically defined psoriatic subjects. These pilot investigations revealed a dramatic down-regulation of caveolin-1 (a protein product of the caveolin supergene family known to regulate signal transduction events and cell cycle dynamics) in the hyperproliferative basal regions of the epidermis in all psoriatic biopsies examined when compared to normal control samples. These results lead us to hypothesise that caveolin-1 negatively regulates key signal transduction pathways in epidermal keratinocytes and through it's reduced expression in psoriasis, pertubations in keratinocyte cell signalling and abnormal cell differentiation ensue, events fundamental to the development of the psoriatic phenotype. Novel therapeutic strategies for the treatment of psoriasis based upon caveolin-1 protein can be envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号