首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 26S proteasome is the major protease responsible for nonlysosomal protein degradation in eukaryotic cells. The enzyme is composed of two subparticles: the 20S proteasome, and a 19S regulatory particle (PA700) which binds to the ends of the 20S proteasome cylinder and accounts for ATP dependence and substrate specificity. Among the approximately 18 subunits of PA700 regulator, six are ATPases. The ATPases presumably recognize, unfold, and translocate substrates into the interior of the 26S proteasome. It is generally believed that the ATPases form a hexameric ring. By means of chemical cross-linking, immunoprecipitation, and blotting, we have determined that the ATPases are organized in the order S6-S6'-S10b-S8-S4-S7. Additionally, we found cross-links between the ATPase S10b and the 20S proteasome subunit alpha6. Together with the previously known interaction between S8 and alpha1 and between S4 and alpha7, these data establish the relative orientations of ATPases with respect to the 20S proteasome.  相似文献   

3.
Substrates enter the proteasome core particle (CP) through a channel that opens upon association with the regulatory particle (RP). Using yeast mutants, we show that channel opening is mediated by the ATPase domain of Rpt2, one of six ATPases in the RP. To test whether degradation products exit through this channel, we analyzed their size distribution. Their median length from an open-channel CP mutant was 40% greater than that from the wild-type. Thus, channel opening may enhance the yield of peptides long enough to function in antigen presentation. These experiments demonstrate that gating of the RP channel controls both substrate entry and product release, and is specifically regulated by an ATPase in the base of the RP.  相似文献   

4.
Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5(K66A) and α6(K62A) resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6(K62A) proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function.  相似文献   

5.
Proteasomes play a key regulatory role in all eukaryotic cells by removing proteins in a timely manner. There are two predominant forms: The 20S core particle (CP) can hydrolyze peptides and certain unstructured proteins, and the 26S holoenzyme is able to proteolyse most proteins conjugated to ubiquitin. The 26S complex consists of a CP barrel with a 19S regulatory particle (RP; a.k.a PA700) attached to its outer surface. Several studies purified another proteasome activator with a MW of 200 kDa (PA200) that attaches to the same outer ring of the CP. A role for PA200 has been demonstrated in spermatogenesis, in response to DNA repair and in maintenance of mitochondrial inheritance. Enhanced levels of PA200-CP complexes are observed under conditions in which either activated or disrupted CP prevail, suggesting it participates in regulating overall proteolytic activity. PA200, or its yeast ortholog Blm10, may also incorporate into 26S proteasomes yielding PA200-CP-RP hybrids. A three-dimensional molecular structure determined by x-ray crystallography of Blm10-CP provides a model for activation. The carboxy terminus of Blm10 inserts into a dedicated pocket in the outer ring of the CP surface, whereas multiple HEAT-like repeats fold into an asymmetric solenoid wrapping around the central pore to stabilize a partially open conformation. The resulting hollow domelike structure caps the entire CP surface. This asymmetric structure may provide insight as to how the 19S RP, with two HEAT repeatlike subunits (Rpn1, Rpn2) alongside six ATPases (Rpt1-6), attaches to the same surface of the CP ring, and likewise, induces pore opening.  相似文献   

6.
We have developed S. cerevisiae as a model system for mechanistic studies of the 26S proteasome. The subunits of the yeast 19S complex, or regulatory particle (RP), have been defined, and are closely related to those of mammalian proteasomes. The multiubiquitin chain binding subunit (S5a/Mcb1/Rpn10) was found, surprisingly, to be nonessential for the degradation of a variety of ubiquitin-protein conjugates in vivo. Biochemical studies of proteasomes from rpn10 mutants revealed the existence of two structural subassemblies within the RP, the lid and the base. The lid and the base are both composed of 8 subunits. By electron microscopy, the base and the lid correspond to the proximal and distal masses of the RP, respectively. The base is sufficient to activate the 20S core particle for degradation of peptides, but the lid is required for ubiquitin-dependent degradation. The lid subunits share sequence motifs with components of the COP9/signalosome complex, suggesting that these functionally diverse particles have a common evolutionary ancestry. Analysis of equivalent point mutations in the six ATPases of the base indicate that they have well-differentiated functions. In particular, mutations in one ATPase gene, RPT2, result in an unexpected defect in peptide hydrolysis by the core particle. One interpretation of this result is that Rpt2 participates in gating of the channel through which substrates enter the core particle.  相似文献   

7.
The 26 S proteasome is a large multi-subunit protein complex that degrades ubiquitinated proteins in eukaryotic cells. Proteasome assembly is a complex process that involves formation of six- and seven-membered ring structures from homologous subunits. Here we report that the assembly of hexameric Rpt ring of the 19 S regulatory particle (RP) requires nucleotide binding but not ATP hydrolysis. Disruption of nucleotide binding to an Rpt subunit by mutation in the Walker A motif inhibits the assembly of the Rpt ring without affecting heterodimer formation with its partner Rpt subunit. Coexpression of the base assembly chaperones S5b and PAAF1 with mutant Rpt1 and Rpt6, respectively, relieves assembly inhibition of mutant Rpts by facilitating their interaction with adjacent Rpt dimers. The mutation in the Walker B motif which impairs ATP hydrolysis does not affect Rpt ring formation. Incorporation of a Walker B mutant Rpt subunit abrogates the ATPase activity of the 19 S RP, suggesting that failure of the mutant Rpt to undergo the conformational transition from an ATP-bound to an ADP-bound state impairs conformational changes in the other five wild-type Rpts in the Rpt ring. In addition, we demonstrate that the C-terminal tails of Rpt subunits possessing core particle (CP)-binding affinities facilitate the cellular assembly of the 19 S RP, implying that the 20 S CP may function as a template for base assembly in human cells. Taken together, these results suggest that the ATP-bound conformational state of an Rpt subunit with the exposed C-terminal tail is competent for cellular proteasome assembly.  相似文献   

8.
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.  相似文献   

9.
The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.  相似文献   

10.
Smith DM  Fraga H  Reis C  Kafri G  Goldberg AL 《Cell》2011,144(4):526-538
In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits and, in archaea, by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits, it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules or two ATPγS plus two ADP molecules, it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and "wobble" on top of the heptameric 20S proteasome.  相似文献   

11.
The core particle (CP) of the yeast proteasome is composed of four heptameric rings of subunits arranged in a hollow, barrel-like structure. We have found that the CP is autoinhibited by the N-terminal tails of the outer (alpha) ring subunits. Crystallographic analysis showed that deletion of the tail of the alpha3 subunit opens a channel into the proteolytically active interior chamber of the CP, thus derepressing peptide hydrolysis. In the latent state of the particle, the tails prevent substrate entry by imposing topological closure on the CP. Inhibition by the alpha subunit tails is relieved upon binding of the regulatory particle to the CP to form the proteasome holoenzyme. Opening of the CP channel by assembly of the holoenzyme is regulated by the ATPase domain of Rpt2, one of 17 subunits in the RP. Thus, open-channel mutations in CP subunits suppress the closed-channel phenotype of an rpt2 mutant. These results identify a specific mechanism for allosteric regulation of the CP by the RP.  相似文献   

12.
Substrate access and processing by the 20S proteasome core particle   总被引:5,自引:0,他引:5  
Intracellular proteolysis is an essential process. In eukaryotes, most proteins in the cytosol and nucleus are degraded by the ubiquitin (Ub)-proteasome pathway. A major component within this system is the 26S proteasome, a 2.5MDa molecular machine, built from more than 31 different subunits. This complex is formed by a cylinder-shaped multimeric complex referred to as the proteolytic 20S proteasome (core particle, CP) capped at each end by another multimeric component called the 19S complex (regulatory particle, RP) or PA700. Structure, assembly and enzymatic mechanism have been elucidated only for the CP, whereas the organization of the RP is less well understood. The CP is composed of 28 subunits, which are arranged as an alpha7beta7beta7alpha7-complex in four stacked rings. The interior of the free core particle, which harbors the active sites, is inaccessible for folded and unfolded substrates and represents a latent state. This inhibition is relieved upon binding of the RP to the CP by formation of the 26S proteasome holoenzyme. This review summarizes the current knowledge of the structural features of 20S proteasomes.  相似文献   

13.
The 19S regulatory complex (RC) of 26S proteasomes is a 900–1000 kDa particle composed of 18 distinct subunits (S1–S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro[1]. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. These studies have allowed us to build a model for the specific arrangement of 9 subunits within the human regulatory complex. This model agrees with recent findings by Glickman et al. [2] who have reported that two subcomplexes, termed the base and the lid, form the RC of budding yeast 26S proteasomes.  相似文献   

14.
The proteasome generally recognizes substrate via its multiubiquitin chain followed by ATP-dependent unfolding and translocation of the substrate from the regulatory particle into the proteolytic core particle to be degraded. Substrate-bound ubiquitin groups are for the most part not delivered to the core particle and broken down together with substrate but instead recovered as intact free ubiquitin and ubiquitin chains. Substrate deubiquitination on the proteasome is mediated by three distinct deubiquitinating enzymes associated with the regulatory particle: RPN11, UCH37, and USP14. RPN11 cleaves at the base of the ubiquitin chain where it is linked to the substrate, whereas UCH37 and apparently USP14 mediate a stepwise removal of ubiquitin from the substrate by disassembling the chain from its distal tip. In contrast to UCH37 and USP14, RPN11 shows degradation-coupled activity; RPN11-mediated deubiquitination is apparently delayed until the proteasome is committed to degrade the substrate. Accordingly, RPN11-mediated deubiquitination promotes substrate degradation. In contrast, removal of ubiquitin prior to commitment could antagonize substrate degradation by promoting substrate dissociation from the proteasome. Emerging evidence suggests that USP14 and UCH37 can both suppress substrate degradation in this way. One line of study has shown that small molecule USP14 inhibitors can enhance proteasome function in cells, which is consistent with this model. Enhancing protein degradation could potentially have therapeutic applications for diseases involving toxic proteins that are proteasome substrates. However, the responsiveness of substrates to inhibition of proteasomal deubiquitinating enzymes may vary substantially. This substrate specificity and its mechanistic basis should be addressed in future studies.The eukaryotic proteasome is dedicated primarily to the degradation of proteins tagged by ubiquitin (1). Proteasomes strongly prefer multiubiquitinated protein substrates. The successive addition of ubiquitin groups to the substrate by ubiquitin ligases is usually accomplished through the formation of ubiquitin chains. The proteasome has much in common with the simple ATP-dependent proteases of prokaryotes and mitochondria (2, 3), although only the proteasome recognizes the ubiquitin modification. In all cases, the ATPases form a hexameric ring complex. These rings are homomeric in the case of the prokaryotic and mitochondrial proteases, whereas in eukaryotic proteasomes, the ATPase ring is heteromeric. Proteasomes and the simple ATP-dependent proteases are fundamentally similar in that they all have an ATPase ring (found within the regulatory particle [RP]1 in proteasomes, also known as the 19S particle and PA700) abutting a proteolytic complex (the core particle [CP] in proteasomes, also known as the 20S particle), although in some cases, the ATPase and protease domains are present on the same polypeptide chain (Fig. 1). Furthermore, this ancient organization of ATP-dependent proteases involves stacked ring complexes. Substrates are translocated from one ring to the next via the central pore within each ring. For most substrates, movement from ring to ring is driven by ATP hydrolysis. Thus, the substrate is captured by the ATPase ring of the RP and then translocated into the central cavity of the CP where it is hydrolyzed.Open in a separate windowFig. 1.Deubiquitinating enzymes of proteasome. In metazoans, three DUBs associate with the proteasome as shown. Each is associated with the 19-subunit RP. The detailed positioning of these enzymes on the RP is not known and is represented here schematically. RPN11 cuts at the base of the chain to release the chain en bloc. As shown, this is coupled (by an unknown mechanism) to translocation of the substrate from the RP to the CP to be degraded. In contrast, the action of USP14 and UCH37 is thought to promote substrate release from the proteasome rather than degradation. However, it should be noted that the attack of these enzymes on a substrate does not guarantee release, especially as their action on the chain is gradual, proceeding stepwise over time from the distal tip of the ubiquitin chain. Some substrates may carry more than one ubiquitin chain and thus be processed in a more complex manner. Moreover, more than one DUB might act on a given chain. The proteasome icon, adapted from Ref. 30 with permission, is based on cryo-EM imaging.The pathway of translocation contains a series of narrow constrictions through which folded proteins cannot pass. The inability of a typical folded protein to pass through these “filters” defines in part the selectivity of such proteases. However, the ATPases can exert a pulling force on the substrate that is strong enough to unfold the protein, which allows for passage through the series of constrictions. This force is exerted within the central channel of the ATPase complex. Thus, translocation and unfolding of the substrate are generally coupled events (13).Although not departing from this paradigm, the eukaryotic proteasome interacts with substrate in a more complex manner as a result of interactions involving the ubiquitin tag. Thus, many of the 13 subunits that were added to the evolutionarily ancient ATPase complex to form the RP in the eukaryotic lineage participate in recognition and processing of the ubiquitin tag (1). For example, the yeast proteasome has five and probably more distinct ubiquitin receptors, two that are integral subunits and three that are reversibly proteasome-associated (4). In addition, proteasomes of mammals have three distinct deubiquitinating enzymes (DUBs). The multiplicity of DUBs points to a surprisingly complex role of deubiquitination in proteasome function.  相似文献   

15.
The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.  相似文献   

16.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

17.
The 26S proteasome plays a major role in eukaryotic protein breakdown, especially for ubiquitin-tagged proteins. Substrate specificity is conferred by the regulatory particle (RP), which can dissociate into stable lid and base subcomplexes. To help define the molecular organization of the RP, we tested all possible paired interactions among subunits from Saccharomyces cerevisiae by yeast two-hybrid analysis. Within the base, a Rpt4/5/3/6 interaction cluster was evident. Within the lid, a structural cluster formed around Rpn5/11/9/8. Interactions were detected among synonymous subunits (Csn4/5/7/6) from the evolutionarily related COP9 signalosome (CSN) from Arabidopsis, implying a similar quaternary arrangement. No paired interactions were detected between lid, base or core particle subcomplexes, suggesting that stable contacts between them require prior assembly. Mutational analysis defined the ATPase, coiled-coil, PCI and MPN domains as important for RP assembly. A single residue in the vWA domain of Rpn10 is essential for amino acid analog resistance, for degrading a ubiquitin fusion degradation substrate and for stabilizing lid-base association. Comprehensive subunit interaction maps for the 26S proteasome and CSN support the ancestral relationship of these two complexes.  相似文献   

18.
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation.  相似文献   

19.
26S蛋白酶体广泛分布于真核细胞中的胞质和胞核,主要是由20S核心复合物(coreparticle,CP)和19S调节复合物(regulatory particle,RP)组成,它负责细胞大多数蛋白质的降解,在几乎所有生命活动中具有关键的调控作用。26S蛋白酶体的组装是一个非常复杂且高度条理的过程,不同的分子伴侣,如PAC1-4、Ump1、p27、p28和s5b等,参与其中发挥识别及调节作用,以确保高效准确地完成蛋白酶体的组装。本文系统总结分析了20S核心复合物和19S调节复合物的组装过程及调控机制的最近研究进展。  相似文献   

20.
For optimal proteolytic function, the central core of the proteasome (core particle (CP) or 20S) has to associate with activators. We investigated the impact of the yeast activator Blm10 on proteasomal peptide and protein degradation. We found enhanced degradation of peptide substrates in the presence of Blm10 and demonstrated that Blm10 has the capacity to accelerate proteasomal turnover of the unstructured protein tau-441 in vitro. Mechanistically, proteasome activation requires the opening of a closed gate, which allows passage of unfolded proteins into the catalytic chamber. Our data indicate that gate opening by Blm10 is achieved via engagement of its C-terminal segment with the CP. Crucial for this activity is a conserved C-terminal YYX motif, with the penultimate tyrosine playing a preeminent role. Thus, Blm10 utilizes a gate opening strategy analogous to the proteasomal ATPases HbYX-dependent mechanism. Because gating incompetent Blm10 C-terminal point mutants confers a loss of function phenotype, we propose that the cellular function of Blm10 is based on CP association and activation to promote the degradation of proteasome substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号