首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
3.
Emanuele MJ  Elia AE  Xu Q  Thoma CR  Izhar L  Leng Y  Guo A  Chen YN  Rush J  Hsu PW  Yen HC  Elledge SJ 《Cell》2011,147(2):459-474
Cullin-RING ligases (CRLs) represent the largest E3 ubiquitin ligase family in eukaryotes, and the identification of their substrates is critical to understanding regulation of the proteome. Using genetic and pharmacologic Cullin inactivation coupled with genetic (GPS) and proteomic (QUAINT) assays, we have identified hundreds of proteins whose stabilities or ubiquitylation status are regulated by CRLs. Together, these approaches yielded many known CRL substrates as well as a multitude of previously unknown putative substrates. We demonstrate that one substrate, NUSAP1, is an SCF(Cyclin F) substrate during S and G2 phases of the cell cycle and is also degraded in response to DNA damage. This collection of regulated substrates is highly enriched for nodes in protein interaction networks, representing critical connections between regulatory pathways. This demonstrates the broad role of CRL ubiquitylation in all aspects of cellular biology and provides a set of proteins likely to be key indicators of cellular physiology.  相似文献   

4.
Post-translational modification by the conjugation of small ubiquitin-like modifiers is an essential mechanism to affect protein function. Currently, only a limited number of substrates are known for most of these modifiers, thus limiting our knowledge of their role and relevance for cellular physiology. Here, we report the development of a universal strategy for proteomic studies of ubiquitin-like modifiers. This strategy involves the development of stable transfected cell lines expressing a double-tagged modifier under the control of a tightly negatively regulated promoter, the induction of the expression and conjugation of the tagged modifier to cellular proteins, the tandem affinity purification of the pool of proteins covalently modified by the tagged modifier, and the identification of the modified proteins by LC and MS. By applying this methodology to the proteomic analysis of SUMO-1 and SUMO-3, we determined that SUMO-1 and SUMO-3 are stable proteins exhibiting half-lives of over 20 h, demonstrated that sumoylation with both SUMO-1 and SUMO-3 is greatly stimulated by MG-132 and heat shock treatment, demonstrated the preferential usage of either SUMO-1 or SUMO-3 for some known SUMO substrates, and identified 122 putative SUMO substrates of which only 27 appeared to be modified by both SUMO-1 and SUMO-3. This limited overlapping in the subset of proteins modified by SUMO-1 and SUMO-3 supports that the SUMO paralogues are likely to be functionally distinct. Three of the novel putative SUMO substrates identified, namely the polypyrimidine tract-binding protein-associated splicing factor PSF, the structural microtubular component alpha-tubulin, and the GTP-binding nuclear protein Ran, were confirmed as authentic SUMO substrates. The application of this universal strategy to the identification of the pool of cellular substrates modified by other ubiquitin-like modifiers will dramatically increase our knowledge of the biological role of the different ubiquitin-like conjugations systems in the cell.  相似文献   

5.
The aspartyl protease BACE1 cleaves neuregulin 1 and is involved in myelination and is a candidate drug target for Alzheimer's disease, where it acts as the β‐secretase cleaving the amyloid precursor protein. However, little is known about other substrates in vivo. Here, we provide a proteomic workflow for BACE1 substrate identification from whole brains, combining filter‐aided sample preparation, strong‐anion exchange fractionation, and label‐free quantification. We used bace1‐deficient zebrafish and quantified differences in protein levels between wild‐type and bace1 ?/? zebrafish brains. Over 4500 proteins were identified with at least two unique peptides and quantified in both wild‐type and bace1 ?/? zebrafish brains. The majority of zebrafish membrane proteins did not show altered protein levels, indicating that Bace1 has a restricted substrate specificity. Twenty‐four membrane proteins accumulated in the bace1 ?/? brains and thus represent candidate Bace1 substrates. They include several known BACE1 substrates, such as the zebrafish homologs of amyloid precursor protein and the cell adhesion protein L1, which validate the proteomic workflow. Additionally, several candidate substrates with a function in neurite outgrowth and axon guidance, such as plexin A3 and glypican‐1 were identified, pointing to a function of Bace1 in neurodevelopment. Taken together, our study provides the first proteomic analysis of knock‐out zebrafish tissue and demonstrates that combining gene knock‐out models in zebrafish with quantitative proteomics is a powerful approach to address biomedical questions.  相似文献   

6.
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53   总被引:33,自引:0,他引:33  
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.  相似文献   

7.
The essential Aurora B kinase is a chromosomal passenger protein that is required for mitotic chromosome alignment and segregation. Aurora B function is dependent on the chromosome passenger, INCENP. INCENP, in turn, requires sister chromatid cohesion for its appropriate behaviour. Relatively few substrates have been identified for Aurora B, so that the precise role it plays in controlling mitosis remains to be elucidated. To identify potential novel mitotic substrates of Aurora B, extracted chromosomes were prepared from mitotically-arrested HeLa S3 cells and incubated with recombinant human Aurora B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein composition of the extracted chromosome fraction. Cloning, fluorescent tagging and expression in HeLa cells of the putative GTP-binding protein NGB/CRFG demonstrated it to be a novel mitotic chromosome protein, with a perichromosomal localisation. Identi fication of the protein bands corresponding to those phosphorylated by Aurora B revealed topoisomerase II alpha (topo IIα) as a potential Aurora B substrate. Purified recombinant human topo IIα was phosphorylated by Aurora B in vitro, confirming this proteomic approach as a valid method for the initial definition of candidate substrates of key mitotic kinases.  相似文献   

8.
In the multienzyme ubiquitin-dependent proteolytic pathway, conjugation of ubiquitin to target proteins serves as a signal for protein degradation. Rabbit reticulocytes possess a family of proteins, known as E2's, that form labile ubiquitin adducts by undergoing transthiolation with the ubiquitin thiol ester form of ubiquitin activating enzyme (E1). Only one E2 appears to function in ubiquitin-dependent protein degradation. The others have been postulated to function in regulatory ubiquitin conjugation. We have purified and characterized a previously undescribed E2 from rabbit reticulocytes. E2(230K) is an apparent monomer with a molecular mass of 230 kDa. The enzyme forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and MgATP and catalyzes conjugation of ubiquitin to protein substrates. Exogenous protein substrates included yeast cytochrome c(Km = 125 mu M; kcat approximately 0.37 min-1) and histone H3 (Km less than 1.3 mu M; kcat approximately 0.18 min-1) as well as lysozyme, alpha-lactalbumin, and alpha-casein. E2(230K) did not efficiently reconstitute Ub-dependent degradation of substrates that it conjugated, either in the absence or in the presence of the ubiquitin-protein ligase that is involved in degradation. E2(230K) may thus be an enzyme that functions in regulatory Ub conjugation. Relative to other E2's, which are very iodoacetamide sensitive, E2(230K) was more slowly inactivated by iodoacetamide (k(obs) = 0.037 min-1 at 1.5 mM iodoacetamide; pH 7.0, 37 degrees C). E2(230K) was also unique among E2's in being subject to inactivation by inorganic arsenite (k(i)max = 0.12 min-1; K(0.5) = 3.3 mM; pH 7.0, 37 degrees C). Arsenite is considered to be a reagent specific for vicinal sulfhydryl sites in proteins, and inhibition is usually rapidly reversed upon addition of competitive dithiol compounds. Inactivation of E2(230K) by arsenite was not reversed within 10 min after addition of dithiothreitol at a concentration that blocked inactivation if it was premixed with arsenite; inactivation is therefore irreversible or very slowly reversible. We postulate that a conformation change of E2(230K) may be rate-limiting for interaction of enzyme thiol groups with arsenite.  相似文献   

9.
The availability of yeast strain collections expressing individually tagged proteins to facilitate one-step purification provides a powerful approach to identify proteins with particular biochemical activities. To identify novel exo- and endo-nucleases that might function in DNA repair, we undertook a proteomic screen making use of the movable ORF (MORF) library of yeast expression plasmids. This library consists of 5,854 yeast strains each expressing a unique yeast ORF fused to a tripartite tag consisting of His6, an HA epitope, a protease 3C cleavage site, and the IgG-binding domain (ZZ) from protein A, under the control of the GAL1 promoter for inducible expression. Pools of proteins were partially purified on IgG sepharose and tested for nuclease activity using three different radiolabeled DNA substrates. Several known nucleases and phosphatases were identified, as well as two new members of the histidine phosphatase superfamily, which includes phosphoglycerate mutases and phosphatases. Subsequent characterization revealed YDR051c/Det1 to be an acid phosphatase with broad substrate specificity, whereas YOR283w has a broad pH range and hydrolyzes hydrophilic phosphorylated substrates. Although no new nuclease activities were identified from this screen, we did find phosphatase activity associated with a protein of unknown function, YOR283w, and with the recently characterized protein Det1. This knowledge should guide further genetic and biochemical characterization of these proteins.  相似文献   

10.
11.
The neutrophil-specific protease membrane-type 6 matrix metalloproteinase (MT6-MMP)/MMP-25/leukolysin is implicated in multiple sclerosis and cancer yet remains poorly characterized. To characterize the biological roles of MT6-MMP, it is critical to identify its substrates for which only seven are currently known. Here, we biochemically characterized MT6-MMP, profiled its tissue inhibitor of metalloproteinase inhibitory spectrum, performed degradomics analyses, and screened 26 chemokines for cleavage using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. MT6-MMP processes seven each of the CXC and CC chemokine subfamilies. Notably, cleavage of the neutrophil chemoattractant CXCL5 activates the chemokine, thereby increasing its agonist activity, indicating a feed-forward mechanism for neutrophil recruitment. Likewise, cleavage also activated CCL15 and CCL23 to increase monocyte recruitment. Utilizing the proteomics approach proteomic identification of cleavage site specificity (PICS), we identified 286 peptidic cleavage sites spanning from P6 to P6' from which an unusual glutamate preference in P1 was identified. The degradomics screen terminal amine isotopic labeling of substrates (TAILS), which enriches for neo-N-terminal peptides of cleaved substrates, was used to identify 58 new native substrates in fibroblast secretomes after incubation with MT6-MMP. Vimentin, cystatin C, galectin-1, IGFBP-7, and secreted protein, acidic and rich in cysteine (SPARC) were among those substrates we biochemically confirmed. An extracellular "moonlighting" form of vimentin is a chemoattractant for THP-1 cells, but MT6-MMP cleavage abolished monocyte recruitment. Unexpectedly, the MT6-MMP-cleaved vimentin potently stimulated phagocytosis, which was not a property of the full-length protein. Hence, MT6-MMP regulates neutrophil and monocyte chemotaxis and by generating "eat-me" signals upon vimentin cleavage potentially increases phagocytic removal of neutrophils to resolve inflammation.  相似文献   

12.
Bacterial adhesion is often a prerequisite for infection, and host cell surface carbohydrates play a major role as adhesion receptors. Streptococci are a leading cause of infectious diseases. However, only few carbohydrate-specific streptococcal adhesins are known. Streptococcus suis is an important pig pathogen and a zoonotic agent causing meningitis in pigs and humans. In this study, we have identified an adhesin that mediates the binding of S. suis to galactosyl-α1-4-galactose (Galα1-4Gal)-containing host receptors. A functionally unknown S. suis cell wall protein (SSU0253), designated here as SadP (streptococcal adhesin P), was identified using a Galα1-4Gal-containing affinity matrix and LC-ESI mass spectrometry. Although the function of the protein was not previously known, it was recently identified as an immunogenic cell wall protein in a proteomic study. Insertional inactivation of the sadP gene abolished S. suis Galα1-4Gal-dependent binding. The adhesin gene sadP was cloned and expressed in Escherichia coli. Characterization of its binding specificity showed that SadP recognizes Galα1-4Gal-oligosaccharides and binds its natural glycolipid receptor, GbO(3) (CD77). The N terminus of SadP was shown to contain a Galα1-Gal-binding site and not to have apparent sequence similarity to other bacterial adhesins, including the E. coli P fimbrial adhesins, or to E. coli verotoxin or Pseudomonas aeruginosa lectin I also recognizing the same Galα1-4Gal disaccharide. The SadP and E. coli P adhesins represent a unique example of convergent evolution toward binding to the same host receptor structure.  相似文献   

13.
Cul1 and Cul7 are cullin E3 ubiquitin ligase scaffold proteins. Cul1 is known to form a complex with the RING domain protein Rbx1 and one of approximately 70 different F-box proteins. F-box proteins function as substrate receptor subunits and recruit numerous substrates for poly-ubiquitination. Similarly to Cul1, Cul7 interacts with Rbx1, however, only one F-box protein, Fbxw8, has been shown to bind to Cul7. To date only few Cul7 E3 ubiquitin ligase substrates, including cyclin D1, IRS-1 and GRASP65, have been reported, and using Fbxw8 affinity purification, we were unable to identify additional substrate proteins. Here we provide evidence for a model in which Cul7-Rbx1 can promote the ubiquitination of Cul1 substrates by forming high order complexes with Cul1-Rbx1. Binding of Cul1-Rbx1 to Cul7-Rbx1 is mediated via heterodimerization of Fbxw8 with other F-box proteins which function to recruit substrates into the E3 ligase complex. The formation of this high order complex is likely to increase polyubiquitination efficiency.  相似文献   

14.
Polyglutamylation is a post-translational modification that generates lateral acidic side chains on proteins by sequential addition of glutamate amino acids. This modification was first discovered on tubulins, and it is important for several microtubule functions. Besides tubulins, only the nucleosome assembly proteins NAP1 and NAP2 have been shown to be polyglutamylated. Here, using a proteomic approach, we identify a large number of putative substrates for polyglutamylation in HeLa cells. By analyzing a selection of these putative substrates, we show that several of them can serve as in vitro substrates for two of the recently discovered polyglutamylases, TTLL4 and TTLL5. We further show that TTLL4 is the main polyglutamylase enzyme present in HeLa cells and that new substrates of polyglutamylation are indeed modified by TTLL4 in a cellular context. No clear consensus polyglutamylation site could be defined from the primary sequence of the here-identified new substrates of polyglutamylation. However, we demonstrate that glutamate-rich stretches are important for a protein to become polyglutamylated. Most of the newly identified substrates of polyglutamylation are nucleocytoplasmic shuttling proteins, including many chromatin-binding proteins. Our work reveals that polyglutamylation is a much more widespread post-translational modification than initially thought and thus that it might be a regulator of many cellular processes.  相似文献   

15.
Halophilic archaea thrive in environments with salt concentrations approaching saturation. However, little is known about the way in which these organisms stabilize their secreted proteins in such 'hostile' conditions. Here, we present data suggesting that the utilization of protein translocation pathways for protein secretion by the Halobacteriaceae differs significantly from that of non-haloarchaea, and most probably represents an adaptation to the high-salt environment. Although most proteins are secreted via the general secretion (Sec) machinery, the twin-arginine translocation (Tat) pathway is mainly used for the secretion of redox proteins and is distinct from the Sec pathway, in that it allows cytoplasmic folding of secreted proteins. tatfind (developed in this study) was used for systematic whole-genome analysis of Halobacterium sp. NRC-1 and several other prokaryotes to identify putative Tat substrates. Our analyses revealed that the vast majority of haloarchaeal secreted proteins were predicted substrates of the Tat pathway. Strikingly, most of these putative Tat substrates were non-redox proteins, the homologues of which in non-haloarchaea were identified as putative Sec substrates. We confirmed experimentally that the secretion of one such putative Tat substrate depended on the twin-arginine motif in its signal sequence. This extensive utilization of the Tat pathway in haloarchaea suggests an evolutionary adaptation to high-salt conditions by allowing cytoplasmic folding of secreted proteins before their secretion.  相似文献   

16.
In the last few years several potential substrates of the insulin receptor tyrosine kinase have been identified, purified, and their cDNAs isolated. These putative substrates include: 1) pp15, a fatty acid-binding protein; 2) pp120, a plasma membrane ecto-ATPase; 3) pp42, a MAP serine/threonine kinase; 4) pp85, a subunit of the Type 1 phosphatidylinositol kinase; and 5) pp185, a phosphatidylinositol kinase binding protein. Although the tyrosine phosphorylation of several of these substrates correlates with the signalling capabilities of various mutant receptors, the role of these substrates in mediating any one of insulin's many biological responses is still unknown. In addition, recent data indicate that the tyrosine phosphorylation of pp42 may in fact be due to autophosphorylation, thereby removing it from the list of putative substrates of the insulin receptor kinase. Finally, the present review discusses the question of whether signalling occurs as a result of the tyrosine phosphorylation of substrates or via the formation of signalling complexes.  相似文献   

17.
Calpain 3 (CAPN3) is a calcium-dependent protease, mutations in which cause limb girdle muscular dystrophy type 2A. To explore the physiological function of CAPN3, we compared the proteomes of transgenic mice that overexpress CAPN3 (CAPN3 Tg) and their nontransgenic (non-Tg) counterparts. We first examined known muscular dystrophy-related proteins to determine if overexpression of CAPN3 results in a change in their distribution or concentration. This analysis did not identify any known muscular dystrophy proteins as substrates of CAPN3. Next, we used a proteomic approach to compare and identify differentially represented proteins in 2-DE of CAPN3 Tg and non-Tg mice. LC-MS/MS analysis led to the identification of ten possible substrates for CAPN3, classified into two major functional categories: metabolic and myofibrillar. Myosin light chain 1 (MLC1) was focused upon because our previous studies suggested a role for CAPN3 in sarcomere remodeling. In this study, CAPN3 was shown to proteolyze MLC1 in vitro. These studies are the first to identify possible substrates for CAPN3 in an in vivo system and support a role for CAPN3 in sarcomere remodeling by cleavage of myofibrillar proteins such as MLC1. In addition, these data also suggest a role for CAPN3 in mitochondrial protein turnover.  相似文献   

18.
In Eukarya, the 26S proteasome is primarily responsible for intracellular protein degradation. To be degraded, proteins must be ubiquitinated. The latter requires a multi-enzyme cascade consisting of an E1, an E2, and an E3 enzyme. While there is only a single E1 and a few E2s, there are many different E3s that target substrates by recognizing specific sequence motifs, known as degrons. Here, we have used the peptide array technology to identify binding motifs in the human androgen receptor (AR), which are recognized by the Carboxyl-terminus of Hsc70-Interacting Protein (CHIP), a U-box E3 and Hsp70/Hsp90 co-chaperone. We show that CHIP recognizes AR in a highly specific, phosphorylation- and sequence-dependent manner, and propose that this interaction could provide a mechanism that regulates the degradation of CHIP substrates.  相似文献   

19.
We developed “fractionation profiling,” a method for rapid proteomic analysis of membrane vesicles and protein particles. The approach combines quantitative proteomics with subcellular fractionation to generate signature protein abundance distribution profiles. Functionally associated groups of proteins are revealed through cluster analysis. To validate the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin-coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale protein interaction maps.  相似文献   

20.
The E6AP ubiquitin ligase catalyzes the high-risk human papillomaviruses' E6-mediated ubiquitylation of p53, contributing to the neoplastic progression of cells infected by these viruses. Defects in the activity and the dosage of E6AP are linked to Angelman syndrome and to autism spectrum disorders, respectively, highlighting the need for precise control of the enzyme. With the exception of HERC2, which modulates the ubiquitin ligase activity of E6AP, little is known about the regulation or function of E6AP normally. Using a proteomic approach, we have identified and validated several new E6AP-interacting proteins, including HIF1AN, NEURL4, and mitogen-activated protein kinase 6 (MAPK6). E6AP exists as part of several different protein complexes, including the proteasome and an independent high-molecular-weight complex containing HERC2, NEURL4, and MAPK6. In examining the functional consequence of its interaction with the proteasome, we found that UBE3C (another proteasome-associated ubiquitin ligase), but not E6AP, contributes to proteasomal processivity in mammalian cells. We also found that E6 associates with the HERC2-containing high-molecular-weight complex through its binding to E6AP. These proteomic studies reveal a level of complexity for E6AP that has not been previously appreciated and identify a number of new cellular proteins through which E6AP may be regulated or functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号