首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the isometric tension, the velocity of unloaded shortening, and the steady-state rate of MgATP hydrolysis on the MgATP concentration (range 0.01-5 mM MgATP) was studied in Ca-activated skinned Limulus muscle fibers. With increasing MgATP concentration the isometric tension increased to a peak at approximately 0.1 mM, and slightly decreased in the range up to 5 mM MgATP. The velocity of unloaded shortening depended on the MgATP concentration roughly according to the Michaelis-Menten law of saturation kinetics with a Michaelis-Menten constant Kv = 95 microM and a maximum shortening velocity of 0.07 muscle lengths s-1; the detachment rate of the cross-bridges during unloaded shortening was 24 s-1. The rate of MgATP splitting also depended hyperbolically on the MgATP concentration with a Michaelis-Menten constant Ka = 129 microM and a maximum turnover frequency of 0.5-1 s-1. The results are discussed in terms of a cross-bridge model based on a biochemical scheme of ATP hydrolysis by actin and myosin in solution.  相似文献   

2.
We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.  相似文献   

3.
Voluntary activation levels during lengthening, isometric, and shortening contractions (angular velocity 60 degrees/s) were investigated by using electrical stimulation of the femoral nerve (triplet, 300 Hz) superimposed on maximal efforts. Recruitment of fiber populations was investigated by using the phosphocreatine-to-creatine ratio (PCr/Cr) of single characterized muscle fibers obtained from needle biopsies at rest and immediately after a series of 10 lengthening, isometric, and shortening contractions (1 s on/1 s off). Maximal voluntary torque was significantly higher during lengthening (270 +/- 55 N.m) compared with shortening contractions (199 +/- 47 N.m, P < 0.05) but was not different from isometric contractions (252 +/- 47 N.m). Isometric torque was higher than torque during shortening (P < 0.05). Voluntary activation level during maximal attempted lengthening contractions (79 +/- 8%) was significantly lower compared with isometric (93 +/- 5%) and shortening contractions (92 +/- 3%, P < 0.05). Mean PCr/Cr values of all fibers from all subjects at rest were 2.5 +/- 0.6, 2.0 +/- 0.7, and 2.0 +/- 0.7, respectively, for type I, IIa, and IIax fibers. After 10 contractions, the mean PCr/Cr values for grouped fiber populations (regardless of fiber type) were all significantly different from rest (1.3 +/- 0.2, 0.7 +/- 0.3, and 0.8 +/- 0.6 for lengthening, isometric, and shortening contractions, respectively; P < 0.05). The cumulative distributions of individual fiber populations after either contraction mode were significantly different from rest (P < 0.05). Curves after lengthening contractions were less shifted compared with curves from isometric and shortening contractions (P < 0.05), with a smaller shift for the type IIax compared with type I fibers in the lengthening contractions. The results indicate a reduced voluntary drive during lengthening contractions. PCr/Cr values of single fibers indicated a hierarchical order of recruitment of all fiber populations during maximal attempted lengthening contractions.  相似文献   

4.
MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the iliofibularis muscle of Xenopus laevis at 4 degrees C from which the sarcolemma was either removed mechanically or made permeable by means of a detergent. A small segment of each fiber was used for a histochemical determination of fiber type. At 5 mM MgATP, the fast fibers had a maximum shortening velocity (Vmax) of 1.74 +/- 0.12 Lo/s (mean +/- SEM) (Lo: segment length at a sarcomere length of 2.2 microns). For the slow fibers Vmax was 0.41 +/- 0.15 Lo/s. In both cases, the relationship between Vmax and the ATP concentration followed the hyperbolic Michaelis-Menten relation. A Km of 0.56 +/- 0.06 mM (mean +/- SD) was found for the fast fibers and of 0.16 +/- 0.03 mM for the slow fibers. Assuming that Vmax is mainly determined by the crossbridge detachment rate, the apparent second order dissociation rate for the actomyosin complex in vivo would be 3.8.10(5) M-1s-1 for the fast fibers and 2.9.10(5) M-1 s-1 for the slow fibers. Maximum power output as a function of the MgATP concentration was derived from the force-velocity relationships.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fluorescence spectra of ANM-labeled, glycerinated rabbit psoas muscle fibers were recorded in relaxed, contracted, and rigor states. SDS polyacrylamide gel electrophoresis of the ANM-labeled muscle fibers indicated that proteins labeled with ANM were myosin heavy chain, C protein, and actin. In a relaxed state in the presence of ATP, myosin heavy chain was mainly labeled. During the transition from rigor to the relaxed or contracted state, there was a blue shift (about 5 nm) of the ANM emission spectrum. Similar experiments with FAM (N-(3-fluoranthyl)-maleimide)-labeled muscle fibers showed that these fluorescence changes were not artifacts due to the movement of muscle fibers. The fibers labeled in the ATP relaxing solution showed a marked decrease in both isometric force and unloaded shortening velocity (Vo), while in the fibers labeled in the rigor solution isometric tension was not markedly suppressed, though Vo decreased to the same extent as in the fibers labeled in the ATP relaxing solution. Fluorescence spectra of ANM-labeled HMM in different states were also measured. A fluorescence enhancement and a blue shift (about 5 nm) of the emission maximum were observed in HMM + MgATP or HMM + MgATP + F-actin in comparison with HMM + F-actin. These results suggest that the fluorescence spectra of the ANM-labeled muscle fibers reflect their conformational changes between the rigor state (in the absence of MgATP) and the relaxed or contracted state (in the presence of MgATP).  相似文献   

6.
Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many instances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon.  相似文献   

7.
Synchronous (fibrillar) insect flight muscle oscillates accordingto a myogenic rhythm. The oscillator is built into the contractilestructure, which can oscillate and perform work in a constantchemical environment with ATP as the only source of energy,when it has been isolated by glycerol-extraction. During oscillation,changes in tension follow changes in length with a delay, sincecontractile activity is switched on and off with a delay byelongation and shortening of the glycerol-extracted fibers (stretchactivates, and release of the fibers deactivates, the contractileATPase). Consequently, sinusoidal stretch and release induceoscillation (driven oscillation) associated with extra ATPaseactivity. The latter is proportional to the power-output, implyinga biochemical Fenn-effect. Power-output and ATPase activitycan be increased by raising the concentration of calcium or—atconstant chemical conditions—by increasing the frequencyorthe amplitude of driven oscillation, demonstrating a mechano-chemicalcoupling between mechanical performance(product of delayed tensionand speed of shortening) and enzymatic activity.  相似文献   

8.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

9.
We have studied the inhibition of the contraction of glycerinated rabbit psoas muscle caused by ligands that bind to the ATPase site of myosin. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decreased the force and stiffness developed in isometric contractions and the velocity of shortening of isotonic contractions. The force exerted by isometric fibers was measured as a function of MgATP in the presence and absence of a constant concentration of the ligands. As the MgATP concentration decreased, the inhibition of tension caused by the ligand increased, reaching approximately 50% at 25 microM MgATP and either 2 mM MgPPi or 2 mM MgAMPPNP. The maximum velocity of shortening was also measured as a function of MgATP concentration in the presence of 1 and 2 mM MgPPi and 2.5 and 5 mM MgAMPPNP. Both ligands acted as pure competitive inhibitors with Ki = 3.0 mM for PPi and 5.1 mM for MgAMPPNP. These data show that both ligands are weak inhibitors of the contraction of fibers. The results provided information on the energetics of actin-myosin-ligand states that occur in the portion of the cross-bridge cycle where MgATP binds to myosin. A simple analysis of the inhibition of velocity suggests that MgAMPPNP binds to the actomyosin complex at this step of the cycle with an effective affinity constant of approximately 2 X 10(2) M-1.  相似文献   

10.
A model is presented to describe the inhibition of muscle fiber contraction by ligands that compete with MgATP. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decrease the force developed in isometric contractions and act as weak competitive inhibitors of the maximum velocity of contraction (Pate & Cooke, 1985). These observations provide information on the energetics of actomyosin ligand states at the end of the power-stroke where MgATP dissociates the myosin cross-bridge from actin, and they are analysed in terms of a seven state model of cross-bridge kinetics. The model can reconcile the observations that these ligands bind tightly to fibers, Kd = 10(-4) M, while they are only weak inhibitors of fiber velocity, Ki = 2 X 10(-3) M. It provides a reasonable fit to the data and leads to several conclusions concerning the properties of the cross-bridge states. The states with bound ligand are shifted axially so that they occur earlier in the power-stroke than the nucleotide-free rigor state. This shift also explains the axial lengthening seen upon addition of ligands to rigor fibers. We can conclude that these ligands cause small perturbations in the cross-bridge configuration rather than large shifts. A second conclusion is that cross-bridges do not detach from actin during their power-strokes. Instead they traverse the entire length of the power stroke and are detached only at the end, leading to the suggestion that the cycling of bridges in isometric fibers is due to fluctuations in the relative positions of thick and thin filaments. With some further assumptions, the model also explains many of the rate constants and equilibrium constants of the actin-myosin-ligand interaction that have been measured in solution.  相似文献   

11.
We examine how the structure and function of indirect flight muscle (IFM) and the entire flight system of Drosophila melanogaster are affected by phosphorylation of the myosin regulatory light chain (MLC2). This integrated study uses site-directed mutagenesis to examine the relationship between removal of the myosin light chain kinase (MLCK) phosphorylation site, in vivo function of the flight system (flight tests, wing kinematics, metabolism, power output), isolated IFM fiber mechanics, MLC2 isoform pattern, and sarcomeric ultrastructure. The MLC2 mutants exhibit graded impairment of flight ability that correlates with a reduction in both IFM and flight system power output and a reduction in the constitutive level of MLC2 phosphorylation. The MLC2 mutants have wild-type IFM sarcomere and cross-bridge structures, ruling out obvious changes in the ultrastructure as the cause of the reduced performance. We describe a viscoelastic model of cross-bridge dynamics based on sinusoidal length perturbation analysis (Nyquist plots) of skinned IFM fibers. The sinusoidal analysis suggests the high power output of Drosophila IFM required for flight results from a phosphorylation-dependent recruitment of power-generating cross-bridges rather than a change in kinetics of the power generating step. The reduction in cross-bridge number appears to affect the way mutant flies generate flight forces of sufficient magnitude to keep them airborne. In two MLC2 mutant strains that exhibit a reduced IFM power output, flies appear to compensate by lowering wingbeat frequency and by elevating wingstroke amplitude (and presumably muscle strain). This behavioral alteration is not seen in another mutant strain in which the power output and estimated number of recruited cross-bridges is similar to that of wild type.  相似文献   

12.
Effects of the non-hydrolyzable nucleotide analogue magnesium pyrophosphate (MgPPi) on cross-bridge properties were investigated in skinned smooth muscle of the guinea pig Taenia coli. A "high" rigor state was obtained by removing MgATP at the plateau of an active contraction. Rigor force decayed slowly towards an apparent plateau of approximately 25-35% of maximal active force. MgPPi markedly increased the rate of force decay. The initial rate of the force decay depended on [MgPPi] and could be described by the Michaelis-Menten equation with a dissociation constant of 1.6 mM. The decay was irreversible amounting to approximately 50% of the rigor force. Stiffness decreased by 20%, suggesting that the major part of the cross-bridges were still attached. The results can be interpreted as "slippage" of PPi-cross-bridges to positions of lower strain. The initial rate of MgPPi-induced force decay decreased with decreasing ionic strength in the range 45-150 mM and was approximately 25% lower in thiophosphorylated fibers. MgADP inhibited the MgPPi-induced force decay with an apparent Ki of 2 microM. The apparent Km of MgATP for the maximal shortening velocity in thiophosphorylated fibers was 32 microM. This low Km of MgATP suggests that steps other than MgATP-induced detachment are responsible for the low shortening velocity in smooth muscle. No effects were observed of 4 mM MgPPi on the force-velocity relation, suggesting that cross-bridges with bound MgPPi do not constitute an internal load or that binding of MgPPi is weaker in negatively strained cross-bridges during shortening.  相似文献   

13.
The effects of 2,3-butanedione 2-monoxime (BDM) on mechanical responses of glycerinated fibers and the ATPase activity of heavy meromyosin (HMM) and myofibrils have been studied using rabbit skeletal muscle. The mechanical responses and the ATPase activity were measured in similar conditions (ionic strength 0.06-0.2 M, 0.4-4 mM MgATP, 0-20 mM BDM, 2-20 degrees C and pH 7.0). BDM reversibly reduced the isometric tension, shortening speed, and instantaneous stiffness of the fibers. BDM also inhibited myofibrillar and HMM ATPase activities. The inhibitory effect on the relative ATPase activity of HMM was not influenced by the addition of actin or troponin-tropomyosin-actin. High temperature and low ionic strength weakened BDM's suppression of contraction of the fibers and the ATPase activity of contracting myofibrils, but not of the HMM, acto-HMM and relaxed myofibrillar ATPase activity. The size of the initial phosphate burst at 20 degrees C was independent of the concentration of BDM. These results suggest that the suppression of contraction of muscle fibers is due mainly to direct action of BDM on the myosin molecules.  相似文献   

14.
We have investigated the ability of the photoaffinity, nonnucleotide ATP analogues, 2-[(4-azido-2-nitrophenyl) amino] ethyl triphosphate (NANTP) and 2-[(4-azido-2-nitrophenyl) amino] propyl triphosphate (PrNANTP), to support active contraction in glycerinated rabbit psoas fibers. At millimolar concentrations, in the absence of calcium, both analogues relaxed fibers. In the presence of calcium, MgNANTP produced isometric tension and stiffness that were one-half to two-thirds the values obtained in MgATP. Maximum shortening velocity and the calcium-activated, myofibrillar catalyzed rate of hydrolysis were approximately the same for MgNANTP as for MgATP. With MgNANTP as the substrate, increasing concentrations of the diphosphate analogue, MgNANDP, inhibited shortening velocity but did not change isometric tension. The addition of increased concentrations of orthophosphate (P) decreased tension while shortening velocity increased. Thus, the effects of the hydrolysis products of NANTP were quite similar to those observed previously for ADP and P in the presence of MgATP. Taken together, these observations show that MgNANTP binds to, and functions in the active site of myosin in a manner quite analogous to MgATP. Thus, the aryl azido group should serve as a valid photoaffinity label for the purine portion of the active site. In contrast, MgPrNANTP, which differs from MgNANTP only in an extra CH2 spacer between the nitrophenyl ring and the triphosphate moiety did not support isometric tension or active shortening in the presence of calcium. Fiber stiffness increased in the presence of calcium and MgPrNANTP, with a calcium-activated, myofibrillar MgPrNANTPase which was about half that obtained with MgATP. Thus, in the presence of MgPrNANTP, cross-bridges appeared to be cycling through states that were attached to actin, but not producing force.  相似文献   

15.
The effects of ADP and phosphate on the contraction of muscle fibers.   总被引:47,自引:11,他引:36       下载免费PDF全文
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did not affect the maximum velocity of shortening. To characterize the effects of ADP on fiber contractions, force-velocity curves were measured for fibers bathed in media containing various concentrations of MgATP (1.5-4 mM) and various concentrations of MgADP (1-4 mM). As the [MgADP]/[MgATP] ratio in the fiber increases, the maximum velocity achieved by the fiber decreases while the isometric tension increases. The inhibition of fiber velocities and the potentiation of fiber tension by MgADP is not altered by the presence of 12 mM phosphate. The concentration of both MgADP and MgATP within the fiber was calculated from the diffusion coefficient for nucleotides within the fiber, and the rate of MgADP production within the fiber. Using the calculated values for the nucleotide concentration inside the fiber, observed values of the maximum contraction velocity could be described, within experimental accuracy, by a model in which MgADP competed with MgATP and inhibited fiber velocity with an effective Ki of 0.2-0.3 mM. The average MgADP level generated by the fiber ATPase activity within the fiber was approximately 0.9 mM. In fatigued fibers MgADP and phosphate levels are known to be elevated, and tension and the maximum velocity of contraction are depressed. The results obtained here suggest that levels of MgADP in fatigued fibers play no role in these decreases in function, but the elevation of both phosphate and H+ is sufficient to account for much of the decrease in tension.  相似文献   

16.
Experiments were conducted in anaesthetized and spinalized cats to measure the extent to which the non-linear response of Ia afferent fibers to sinusoidal muscle stretch as expressed by the peristimulus-time-histograms, PSTHs, can be transformed into a linear one by means of the superposition of random stretch ("mechanical noise"). The gastrocnemius muscles of one hind leg were stretched and the response to sinewave muscle stretch (amplitudes between 0.01 and 4.0 mm, frequencies between 0.1 and 20 Hz) were investigated while band-limited mechanical noise was superimposed on the sinewave stretch. The random stretch upper cut-off frequency was varied between 60 and 300 Hz; the displacements were normally distributed. The noise amplitude sigma, i.e. the standard deviation of the displacement distributions, was varied systematically between 0.002 and 0.4 mm. Mechanical noise was very effective in raising the mean discharge rate. Added to the sinusoidal stretch it prevented the cessation of firing during the release phase of the stretch cycle, or at least reduced the duration of discharge pauses, i.e., a linearization occurred. In general, the larger the noise amplitude, the more the amplitude of the fundamental harmonic component was attenuated and the phase lead reduced. Apart from this rule the particular combination of superimposing small noise (sigma less than 0.02 mm) on small sinewave stretch (A less than 0.02 mm) could enhance the depth of sinusoidal modulation of cycle histograms (compared with responses to pure sinusoids). Linearizing the sinewave response by additional noise allowed the estimation of frequency response characteristics in the otherwise non-linear range of amplitudes (sinewave amplitude 0.5-1.0 mm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We present a technique to combine muscle shortening and lengthening velocity information with electromyographic (EMG) profiles during gait. A biomechanical model was developed so that each muscle's length could be readily calculated over time as a function of angles of the joints it crossed. The velocity of shortening and lengthening of the muscle fiber was then calculated, and with computer graphics this information was overlaid on the EMG profiles. Thus, researchers and clinicians were not only able to interpret the processed EMG signal as level of activity (tension) but also to gain insight as to the muscles' role as generators (muscle shortening) or absorbers (muscle lengthening) of energy. Six common muscles are documented, using database profiles; soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF), and semitendinosus (ST). The protocol thus demonstrates a relatively simple technique for calculating muscle fiber velocity and for combining that velocity information with EMG activity profiles.  相似文献   

18.
We are investigating the influence of the converter and relay domains on elementary rate constants of the actomyosin cross-bridge cycle. The converter and relay domains vary between Drosophila myosin heavy chain isoforms due to alternative mRNA splicing. Previously, we found that separate insertions of embryonic myosin isoform (EMB) versions of these domains into the indirect flight muscle (IFM) myosin isoform (IFI) both decreased Drosophila IFM power and slowed muscle kinetics. To determine cross-bridge mechanisms behind the changes, we employed sinusoidal analysis while varying phosphate and MgATP concentrations in skinned Drosophila IFM fibers. Based on a six-state cross-bridge model, the EMB converter decreased myosin rate constants associated with actin attachment and work production, k4, but increased rates related to cross-bridge detachment and work absorption, k2. In contrast, the EMB relay domain had little influence on kinetics, because only k4 decreased. The main alteration was mechanical, in that work production amplitude decreased. That both domains decreased k4 supports the hypothesis that these domains are critical to lever-arm-mediated force generation. Neither domain significantly influenced MgATP affinity. Our modeling suggests the converter domain is responsible for the difference in rate-limiting cross-bridge steps between EMB and IFI myosin—i.e., a myosin isomerization associated with MgADP release for EMB and Pi release for IFI.  相似文献   

19.
The effects of dissociation of force-generating cross bridges on intracellular Ca(2+), pCa-force, and pCa-ATPase relationships were investigated in mouse skeletal muscle. Mechanical length perturbations were used to dissociate force-generating cross bridges in either intact or skinned fibers. In intact muscle, an impulse stretch or release, a continuous length vibration, a nonoverlap stretch, or an unloaded shortening during a twitch caused a transient increase in intracellular Ca(2+) compared with that in isometric controls and resulted in deactivation of the muscle. In skinned fibers, sinusoidal length vibrations shifted pCa-force and pCa-actomyosin ATPase rate relationships to higher Ca(2+) concentrations and caused actomyosin ATPase rate to decrease at submaximal Ca(2+) and increase at maximal Ca(2+) activation. These results suggest that dissociation of force-generating cross bridges during a twitch causes the off rate of Ca(2+) from troponin C to increase (a decrease in the Ca(2+) affinity of troponin C), thus decreasing the Ca(2+) sensitivity and resulting in the deactivation of the muscle. The results also suggest that the Fenn effect only exists at maximal but not submaximal force-activating Ca(2+) concentrations.  相似文献   

20.
The Effect of Shortening on the Time-Course of Active State Decay   总被引:1,自引:1,他引:0  
The active state describes the force developed in a muscle when the contractile elements are neither lengthening nor shortening. Recently it was suggested that perturbations used to measure the active state also alter the time-course of the active state. The present research was undertaken to assess quantitatively the effect of two such perturbations, isotonic shortening and quick release, on the active state in frog sartorius muscle. Methods were developed which allowed the determination of active state points following periods of controlled isotonic shortening or quick release early in the contraction cycle. All experiments were carried out within the plateau region of the length-tension curve. Both isotonic shortening and quick release altered the active state decay. The active state force decreased as the extent of shortening or release was increased. For each 0.1 mm of isotonic shortening there was a 2% decrease in active state force. Quick release produced a larger decrement. From this data we conclude that the time-course of active state can be measured only in relative terms because it is altered by the motion which takes place in the contractile machine while the active state is being measured. This finding helps to resolve paradoxes in the literature relating to the time-course of the active state, calculated and experimentally determined isometric tetanic myograms, and the heat of shortening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号