首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ly-6 alloantigens have been shown to participate in the process of T cell activation based on the ability of anti-Ly-6 mAb to induce IL-2 production and proliferation of T lymphocytes. In the present investigation we have demonstrated that peripheral T lymphocytes from A strain mice exhibited abnormally low proliferative responses after stimulation through Ly-6A/E and Ly-6C molecules when compared to responses of T cells from numerous other mouse strains. The abnormal activation of the Ly-6 pathway of A strain T cells was not due to ineffective FcR cross-linking of the anti-Ly-6 mAb, to inappropriate cellular expression of the Ly-6A/E alloantigen in A strain T cells, or to an active suppressive phenomenon. T lymphocytes from A strain mice proliferated normally when the cells were activated by mAb to Thy-1 or the CD3/TCR complex suggesting that A strain mice did not exhibit a generalized T cell activation defect. Cell separation studies of T cells and accessory cells demonstrated that this defect was quantitative, rather than qualitative, and that it was complex, residing at both the T cell and accessory cell levels. These results suggest that activation of T lymphocytes via the Ly-6 molecule may involve a signaling pathway and/or cell-cell interactions distinct from those required for optimal activation via CD3/TCR.  相似文献   

2.
Down-regulation of IL-2 production by activation of T cells through Ly-6A/E   总被引:4,自引:0,他引:4  
Ly-6A/E molecules are expressed on the surface of T cells and have been shown to function in activation by the capacity of anti-Ly-6A/E mAb to induce T cell hybridomas or normal T cells to produce IL-2. Recent evidence suggests that activation through Ly-6A/E may be linked to the TCR signaling pathway. To further investigate the relationship between Ly-6- and TCR-induced T cell activation, we have examined whether an anti-Ly-6A/E mAb (D7) modulates TCR signaling in vitro. We now report that mAb D7 specifically inhibited IL-2 production by T cells also activated through TCR. Such inhibition was noted for normal T cells stimulated by soluble anti-CD3 or alloantigen and for T hybridomas stimulated by soluble anti-CD3. The ability of D7 to inhibit IL-2 production by T hybridomas was dependent on the nature of the TCR activating signal because IL-2 production was not inhibited when T hybridomas were stimulated with Ag or immobilized anti-CD3. Inhibition of IL-2 production by D7 apparently required cross-linking of the mAb because D7 F(ab')2 fragments were not effective for inhibition of IL-2 production. Similar to its ability to enhance anti-Ly-6A/E-induced activation of T and B cells, IFN-gamma enhanced the D7-induced inhibition of IL-2 production by alloantigen-activated normal T cells. These data further support the notion that Ly-6 and TCR signaling pathways are interrelated.  相似文献   

3.
Ly-6A/E molecules were originally implicated in regulation of T cell activation because anti-Ly-6A/E mAb induce IL-2 production. More recently we have shown that anti-Ly-6A/E also inhibits IL-2 production induced by anti-CD3. In the present study we used mutant and transfected cell lines that varied in expression of Ly-6A/E or TCR-zeta to test whether the positive and negative modulations of IL-2 production by anti-Ly-6A/E occur by distinct mechanisms. Anti-Ly-6A/E inhibited anti-CD3-induced IL-2 production for Ly-6E.1-transfected EL4J cells, but did not affect IL-2 production of the parental Ly-6A/E-negative EL4J cells. These results indicate that TCR-mediated IL-2 production can occur in the absence of Ly-6A/E expression and establish that anti-Ly-6A/E-induced inhibition of IL-2 production was the result of antibody binding to Ly-6A/E. As expected, MA5.8 (zeta-negative) or CT108 (zeta-truncated) variants of the 2B4.11 T cell hybridoma did not produce IL-2 when stimulated with anti-Thy-1 or anti-Ly-6A/E mAb. In contrast, anti-Ly-6A/E inhibited anti-CD3-induced IL-2 production by MA5.8 and CT108. Furthermore, anti-Ly-6A/E-induced IL-2 production was restored for zeta-transfected MA5.8. Thus, although induction of IL-2 by anti-Ly-6A/E depends on zeta expression, inhibition of IL-2 by anti-Ly-6A/E occurs by a zeta-independent mechanism. Interestingly, anti-Ly-6A/E, but not anti-Thy-1, inhibited anti-CD3-induced IL-2 production by MA5.8 and Ly-6E.1-transfected EL4J. Therefore, inhibition of IL-2 production by anti-Ly-6A/E was not a general property of a mAb binding to a phosphatidylinositol-linked molecule, as has been suggested for induction of IL-2 production. Taken together these data suggest that the molecular mechanisms of induction and inhibition of IL-2 production by anti-Ly-6A/E are separable and expression of TCR-zeta is one variable that distinguishes these two pathways.  相似文献   

4.
The Ly-6 family of cell surface molecules has previously been shown to participate in T cell activation. We show that Ly-6A/E proteins also modulated the response of normal B lymphocytes in three separate in vitro assays. First, unfractionated or small resting B cells proliferated when cultured with IFN-gamma, IL-4, and an anti-Ly-6A/E mAb. Second, this anti-Ly-6A/E mAb restored B cell proliferation responses that were inhibited when coculturing the B cells in IFN-gamma, IL-4, and anti-IgM. Third, anti-Ly-6A/E specifically up-regulated the cell surface expression of its own Ag, and this response was dependent upon co-stimulation with IFN-gamma. Mixing of T and B cells in culture suggested that T cells did not contribute substantially to the B cell proliferative response. Moreover, up-regulation of Ly-6A/E was observed for one B cell lymphoma, WEHI-231. Therefore, it appeared that modulation of B cell function by anti-Ly-6A/E was due to a direct effect of the mAb binding to the B cells. Taken together, these data suggest Ly-6A/E proteins are functional on B cells and may play a regulatory role in B cell activation.  相似文献   

5.
Monoclonal antibody crosslinking of phosphatidylinositol-anchored Ly-6A.2 molecules on the surface of murine T lymphocytes leads to cell activation and secretion of IL-2. To examine the potential activity of these molecules in human T cells we transfected the Ly-6A.2 gene into Jurkat cells. Transfection of Jurkat cells with genomic Ly-6A.2 sequences results in low levels of Ly-6A.2 on the cell surface. However, linking the Ly-6A.2 sequences to the enhancer from the human CD2 gene results in greatly increased expression of Ly-6A.2. These molecules are anchored to the membrane via a phosphatidylinositol linkage. Crosslinking of Ly-6A.2 molecules with soluble mAb stimulates the transfected Jurkat cells to produce IL-2. This stimulation is abrogated by treatment with phosphatidylinositol-specific phospholipase C. The transfected human T cells displayed the same unusual crosslinking requirements for stimulation with anti-Ly-6A.2 mAbs as previously observed for murine T cells. Crosslinking of Ly-6A.2 with soluble antibodies is stimulatory, whereas immobilized antibodies are inactive. The crosslinking requirements for antiCD3 mAb stimulation display a reciprocal pattern. These data demonstrate that the Ly-6A.2 pathway for T cell activation is conserved between human and murine T cells.  相似文献   

6.
A new T cell molecule defined by the mAb 143-4-2 has been identified that is involved in T cell activation. The expression of the 143-4-2-defined epitope is linked to the previously characterized Ly-6 locus and restricted to bone marrow cells and to a subset of peripheral Lyt-2+ cells. In comparison to other anti-Ly-6.2 mAb, the 143-4-2 mAb appears to be directed at an allogeneic determinant of the Ly-6.2C molecule. The anti-Ly-6.2C antibody can promote the lysis of antigen-non-bearing target cells by alloreactive CTL clones, and in the presence of cofactors (PMA or IL 2) induces a subset of Lyt-2+ cells to proliferate, perhaps through an autocrine pathway. Although the antibody described has antigen-like effects as described for anti-TcR complex reagents, studies performed with a recently derived anti-murine T3 mAb suggest that the Ly-6.2C molecule is not associated on the cell surface with components of the TcR complex. Nevertheless, cell surface expression of the TcR complex is required for optimal triggering of T cells via the Ly-6.2C molecule. Because Ly-6.2C determinants are expressed in bone marrow and not in the thymus, the possibility is considered that expression of this molecule identifies a distinct subset of extrathymically derived T cells.  相似文献   

7.
CD59 functions as a signal-transducing molecule for human T cell activation.   总被引:16,自引:0,他引:16  
The CD59 Ag is a 20-kDa protein that is widely expressed on most leukocytes and RBC, is coupled to the membrane by a phosphatidylinositol-glycan anchoring structure, plays a role in cell interaction between monocytes and T cells, and also functions as an inhibitor of cytolysis by the terminal C components C5b-9. Because this molecule is structurally related to the murine Ly-6 family of Ag, we have investigated whether anti-CD59 mAb might be capable of activating human T lymphocytes in a manner similar to that described for antibodies to the murine Ly-6 Ag. In the presence of the appropriate co-stimulators, mAb to one of the two epitopes on CD59 were capable of inducing both a rise in intracytoplasmic free Ca2+, inositol phosphate production, IL-2 production, and T cell proliferation. Anti-CD59-induced inositol phosphate turnover and IL-2 production were dependent on co-expression of the CD3/TCR complex. CD59-loss mutants of the Jurkat cell line were completely responsive to stimulation by anti-CD3 thereby demonstrating that CD59 does not play a role as a signal transducer downstream from the TCR. Taken together, these results demonstrate that the CD59 Ag can play multiple distinct roles in the regulation of the immune response.  相似文献   

8.
T cell activation depends not only on the expression of a TCR, but also on that of accessory molecules that function in cell-cell adhesion and/or signal transduction. The subject of this report is the biochemical and functional characterization of what appears to be a novel murine lymphocyte cell surface antigen, provisionally termed sgp-60. Extensive, higher-order cross-linking of this glycoprotein with an anti-sgp-60 mAb and a second-step antibody reagent results in the activation of resting CD4+ T cells in the presence of a second signal. Monovalent or bivalent engagement of sgp-60 by the anti-sgp-60 antibody results in profound and direct inhibition of anti-CD3- or Con A-driven T cell activation, whereas alternative T cell activation via the phosphatidylinositol-linked proteins Thy-1 and TAP/Ly-6A is not affected. These findings raise the possibility that the sgp-60 molecule may be specifically involved in signal transduction through the TCR/CD3 complex and thus point to an important physiologic role for this protein in CD4+ T cells.  相似文献   

9.
The Ly-6 locus encodes several cell surface proteins of 10-12 kDa. Some members of this multigene family may function in cell signaling and/or cell adhesion processes. T lymphocytes overexpressing Ly-6A.2 (one member of the Ly-6 gene family) protein homotypically aggregate when cultured in vitro. Further analysis of this homotypic aggregation suggests that Ly-6A.2 participates in cell-cell adhesion. These observations indicated the presence of a Ly-6 ligand(s) on the surface of lymphoid cells. In this study we report generation of a hamster mAb, 9AB2, that blocks Ly-6A.2-dependent cell-cell adhesion. The 9AB2 Ab recognizes a 66-kDa glycoprotein with unique tissue expression. The 9AB2 mAb does not bind Ly-6A.2, but coimmunoprecipitates Ly-6A.2 molecule. Moreover, 9AB2 Ag-expressing thymocytes specifically bind to Chinese hamster ovary cells overexpressing Ly-6A.2 protein, and this binding is specifically blocked by 9AB2 and anti-Ly-6A.2 Abs. These results suggest that the 66-kDa protein recognized by 9AB2 mAb is the putative ligand for Ly-6A.2.  相似文献   

10.
TAP is a phosphatidylinositol-anchored Ly-6-encoded, glycoprotein that is involved in the activation of murine T-inducer cells. Anti-TAP antibodies can stimulate T cells directly and also synergize with Ag stimulation. To determine the relationship between TAP and TCR-mediated activation, we have derived TCR/CD3 loss variants of functional T hybrid clones. T-T hybrid variants that have lost TCR expression are not responsive to anti-TAP stimulation. Isolation and analysis of revertant clones, obtained from one of the TCR/CD3-negative mutant cell lines, demonstrate a concordant re-expression of the TCR/CD3 complex and responsiveness to anti-TAP stimulation. A similar loss of responsiveness to TAP stimulation is observed after antibody-induced modulation of the TCR/CD3 complex from the surface of T cell hybrids. In contrast, both the TCR/CD3 loss variants and TCR/CD3-modulated T-T hybrids remain fully responsive to stimulation with a calcium ionophore and phorbol esters. This structure-function correlation has been observed repeatedly in independent isolations of variants, and with TCR/CD3 modulated cells, from two different T-T hybridomas. Given the apparent functional interrelationship between TAP and the TCR/CD3 complex, we have also analyzed if these molecules were significantly associated on the T cell surface. Antibody-induced modulation of the TCR/CD3 complex does not affect the cell surface expression of TAP molecules. Moreover, the expression of these two sets of proteins is also independent as evidenced by the selective loss of either set of these proteins in the TCR/CD3 expression mutants.  相似文献   

11.
Exposure of T94, a CD4+ V beta 8-expressing murine Th cell clone, or immediately ex vivo CD4+ T cells to deaggregated, bivalent antibodies specific for either the TCR or CD3 failed to induce an increase in [Ca2+]i, or activation of phosphatidylinositol hydrolysis unless cross-linked with a secondary anti-Ig antibody. In contrast, we show that a combination of two mAb directed against different components of the TCR/CD3 complex (145.2C11, anti-CD3 epsilon and F23.1, anti-V beta 8) successfully induce second messenger formation, that is, without any requirement for a secondary antibody. This requirement for either a secondary antibody or two independent bivalent antibodies to activate second messenger production in T cells suggested that the signal transduction apparatus may be activated by multiple TCR/CD3 complexes being brought together on the T cell surface. This was supported by the observation that conditions inducing increased T cell [Ca2+]i through the TCR/CD3 complex also resulted in aggregation of the TCR/CD3 complex on the T cell surface. Conversely, binding of anti-TCR/CD3 antibodies to the T cell under conditions that did not induce increased [Ca2+]i also failed to induce surface TCR/CD3 redistribution. Cross-linking of the CD4 accessory molecule on T94 also resulted in increased [Ca2+]i, with kinetics similar to those observed after TCR/CD3 oligomerization. CD4 is involved in the recognition of invariant regions of MHC class II during Ag presentation and has been proposed to be associated with TCR/CD3 in the absence of Ag. Aggregation of TCR/CD3 and subsequent second messenger formation was achieved by combinations of mAb to distinct determinants within the complex due to the stable association of these determinants within the T cell membrane. We therefore assessed the functional association of CD4 with the TCR/CD3 complex by examining whether a combination of mAb directed against CD4 and CD3 or TCR induced second messenger formation. We found that anti-CD4 in combination with F23.1 or with 145.2C11 failed to induce increases in [Ca2+]i. Furthermore, mAb to CD4 failed to inhibit the increase in [Ca2+]i observed with the combination of 145.2C11 and F23.1. We therefore conclude that CD4 is not stably associated with TCR or CD3 in the absence of Ag/MHC class II composites.  相似文献   

12.
Engagement of the TCR (CD3-Ti) by Ag/MHC, CD3 mAb, or lectin mitogen stimulates the very early tyrosine phosphorylation of several cellular substrates including TCR-zeta. The T cell specific protein-tyrosine kinase (PTK), p56lck, has been implicated in the tyrosine phosphorylation of TCR-zeta. However, the significance of this event with regard to CD3-Ti signal transduction remains unclear. Herein, we have investigated the effect of the selective PTK inhibitor genistein (4',5,7-trihydroxyisoflavone) on cellular events associated with activation via CD3-Ti triggering. Genistein inhibited the T cell PTK, p56lck, in a dose-dependent fashion with an ID50 = 40 microM. Genistein also inhibited CD3 mAb or PHA-induced TCR-zeta chain phosphorylation in intact peripheral blood T cells. Genistein blocked the expression of IL-2 and IL-2R (CD25) in T cells stimulated with PHA/PMA or CD3 mAb/PMA, but did not inhibit the de novo expression of the CD69 early activation Ag, which is induced primarily by a PKC-dependent pathway. IL-2 and CD25 expression induced by calcium ionophore A23187 and PMA was largely refractory to inhibition by genistein, suggesting an effect of the drug on calcium-dependent pathways stimulated via CD3-Ti triggering. In this last regard, genistein partially inhibited the CD3 mAb-induced rise in [Ca2+]i but did not inhibit PHA- or CD3 mAb-induced phosphatidylinositol hydrolysis. Consequently, protein-tyrosine phosphorylation does not appear to be a prerequisite for CD3-Ti-mediated activation of phosphatidylinositol-specific phospholipase C activity and PIP2 hydrolysis. An alternative role for PTK in CD3-Ti signal transduction is suggested.  相似文献   

13.
We investigated early activation events after T cell triggering via the Ag receptor (TCR/CD3) complex as compared to activation via the CD2 surface molecule. To this end, resting peripheral human T lymphocytes were preincubated with 32P-orthophosphate and subsequently exposed to mitogenic mAb directed at either TCR/CD3 or CD2 for varying time periods. Cells were lysed and postnuclear lysates subjected to two-dimensional-gel electrophoresis (IEF and SDS-PAGE). As early as 10 min after stimulation through CD2, dephosphorylation of a cytosolic 19-kDa protein was observed. In contrast, this protein remained phosphorylated in unstimulated as well as CD3 activated T cells. Phosphoprotein (pp) 19 dephosphorylation was transient because, at later time points (2-4 h) after CD2 triggering, this protein was phosphorylated again. Phosphoaminoacid analysis indicated that pp19 is dephosphorylated on serine residues. Identical results were obtained using a CD2+ but TCR/CD3- human NK cell clone indicating that pp19 dephosphorylation occurs independent of surface expression of a TCR/CD3 complex. These data show that, in addition to protein phosphorylation events, serine dephosphorylation is involved in T cell triggering. More important, a selective signaling mechanism appears to be linked to T cell activation through the CD2 pathway.  相似文献   

14.
Cross-linking of the human homologue of the murine MEL-14 lymph node homing receptor (Selectin-1, LECAM-1, Leu 8) on both T and B cells results in modification of cell function. To investigate this phenomenon, we performed studies to determine if the Leu 8 molecule influences T cell activation via the TCR/CD3 complex. In initial studies, we treated T cells with immobilized anti-CD3 (OKT3 mAb) in the presence or absence of immobilized Leu 8 mAb. We found that although Leu 8 mAb alone had no effect on T cell proliferation, this antibody markedly augmented immobilized OKT3 mAb-induced proliferation. In further studies, we immunoprecipitated surface radioiodinated T cell lysates with OKT3 and Leu 8 mAb to determine if molecules in the TCR/CD3 complex associate with Leu 8 molecules. Although Leu 8 mAb immunoprecipitated only a single protein of approximately 80 kDa from T cell lysates treated with Nonidet P-40 under reducing condition, it coimmunoprecipitated additional proteins of 48, 42, 28, 24, and 22 kDa from T cell lysates treated with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate. These additional proteins were identified as the alpha-, beta-, gamma-, delta-, and epsilon-chains of the TCR/CD3 complex by one-dimensional and two-dimensional diagonal SDS-PAGE. Densitometric scanning showed that, on average, 18% of the TCR/CD3 complex associates with Leu 8. In a final study, we showed by immunoblotting analysis using anti-zeta peptide antibody that Leu 8 mAb coimmunoprecipitates the zeta-chain of CD3. These results indicate that the human lymph node homing receptor homologue (Leu 8) participates in the activation of T cells, probably via its association with the TCR/CD3 complex.  相似文献   

15.
Activation of resting human CD4+ T cells mediated by mAb ligation of the TCR/CD3 complex requires costimulatory signals to result in proliferation; these can be provided by intercellular cell adhesion molecule-1 (ICAM-1, CD54) a natural ligand of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18). We analyzed early signaling events involved in T cell activation to determine the contribution by the LFA-1/ICAM-1 interaction. We studied in detail the hydrolysis of phosphatidylinositol(4,5)bisphosphate and intracellular levels of free Ca2+ during stimulation with beads coated with the CD3 mAb OKT3 alone or in combination with purified ICAM-1 protein. Our investigations show no response to LFA-1/ICAM-1 alone, but that costimulation by LFA-1/CAM-1 interaction induces prolonged inositol phospholipid hydrolysis (up to 4 h), resulting in generation of both inositol(1,4,5)phosphate3 and inositol(1,3,4,5)phosphate4 and their derivatives. Based on studies with cycloheximide, this costimulatory effect of prolonged inositol phospholipid hydrolysis appears dependent in part on de novo protein synthesis. A sustained increase in intracellular levels of free Ca2+ level is also observed after LFA-1/ICAM-1 costimulation, which is at least partly dependent on extracellular sources of Ca2+. Kinetic studies indicate that costimulation requires a minimal period of 4 h of LFA-1/ICAM-1 interaction to provide maximal costimulation for OKT3-mediated T cell proliferation. Thus, the necessary costimulation required for OKT3-mediated proliferation in this model system may be provided by an extended LFA-1/ICAM-1 interaction that in combination with OKT3 mAb leads to signal-transducing events, resulting in prolonged phospholipase C activation and phosphatidylinositol(4,5)bisphosphate hydrolysis, and a sustained increase in intracellular levels of free Ca2+.  相似文献   

16.
The murine Ly-6A.2 and Ly-6E.1 antigens, which can transduce triggering signals in T cells, have been shown to become highly expressed after mitogenic stimulation. It has recently been found that enhanced expression of Ly-6A/E antigens is also induced by interferon-gamma (IFN-gamma) in resting T cells. Here, the possibility is investigated that Ly-6A/E induction on activated T cells may be due to the IFN-gamma known to be secreted by these cells. A potent neutralizing anti-IFN-gamma monoclonal antibody (mAb) (H-22.10) was used. This mAb was found to abrogate the augmentation of Ly-6A/E antigens produced in resting T cells by supernatants from T cells stimulated with concanavalin A. When added directly into cultures of T cells stimulated with concanavalin A or by the combination of ionomycin with the protein kinase C activator phorbol myristate acetate (PMA), the H-22.10 mAb inhibited Ly-6A/E enhancement without affecting the blastogenesis or the emergence of interleukin 2 receptors and transferrin receptors. Such a selective effect of the anti-IFN-gamma mAb indicated that IFN-gamma is involved in the up-regulation of Ly-6A/E antigens during T cell activation. In determining whether other activation signals, in addition to IFN-gamma receptor occupancy, may contribute to Ly-6A/E enhancement, it was found that suboptimal stimulation of BALB/c T cells provided by a 3-hr pulse with ionomycin plus PMA or by culture with PMA alone potentiated by about twofold the increase of Ly-6E.1 induced by exogenous IFN-gamma. Therefore, Ly-6A/E augmentation in activated T cells reflects primarily an action of endogenous IFN-gamma that is amplified (in BALB/c mice) by a protein kinase C-dependent step.  相似文献   

17.
PLC gamma 1, a possible mediator of T cell receptor function   总被引:10,自引:0,他引:10  
Stimulation of T cell antigen receptor (TCR/CD3) following the recognition of peptide-major histocompatibility antigen complex induces phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, the phospholipase C (PLC) enzyme mediating this process has not been identified. We report that PLC gamma 1 protein is expressed in human T cells. It is a phosphoprotein, and the activation of cyclic AMP-dependent protein kinase (PKA) or of protein kinase C (PKC) with forskolin or phorbol ester, respectively, increases the level of phosphorylation. CD3 stimulation of T cells induces tyrosine phosphorylation of PLC gamma 1 and causes 8-10-fold higher yield of PLC activity with anti-phosphotyrosine antibody (APTyr Ab) from activated cells than from non-activated cells. Genistein, an inhibitor of protein tyrosine kinase, decreases this yield of AP-Tyr Ab-bound PLC activity from activated cells and lowers the level of Ca2+ mobilization. Furthermore, phorbol ester and forskolin treatment of cells before CD3 stimulation reduces the level of tyrosine phosphorylation of PLC gamma 1 and the PLC activity associated with APTyr Ab. These results suggest that CD3 stimulation activates PIP2 hydrolysis by inducing tyrosine phosphorylation of PLC gamma 1, which is regulated negatively by PKC and PKA.  相似文献   

18.
TCR stimulation by Ag or anti-receptor antibodies in murine T cells results in the activation of two independent protein kinases, protein kinase C (PKC) and a protein tyrosine kinase. Similarly, stimulation of murine Thy-1 or Ly-6 with mAb also results in activation of both of these kinase pathways. Tyrosine phosphorylation in all cases occurs on the TCR zeta-chain. It is known that Ag and anti-receptor antibodies activate PKC in human T cells. In this study we demonstrate that mitogen or anti-CD3 antibodies activate tyrosine phosphorylation of the human TCR-zeta-chain. PMA, which activates PKC, does not result in zeta-chain tyrosine phosphorylation. Stimulation of human T cells by antibodies that bind the CD2 molecule is an alternate mode of inducing T cell proliferation. These antibodies surprisingly do not induce tyrosine phosphorylation of the zeta-chain. Thus, different methods of cellular activation can result in distinguishable patterns of receptor-mediated biochemical signaling events.  相似文献   

19.
Ly-6 proteins appear to serve cell adhesion and cell signaling function, but the precise role of Ly-6A.2 in CD4+ T lymphocytes is still unclear. Overexpression of Ly-6A.2 in T lymphocytes has allowed us to analyze the influence of elevated Ly-6A.2 expression on T cell function. In this study we report reduced proliferation of CD4+ T cells overexpressing Ly-6A.2 in response to a peptide Ag. Moreover, the Ly-6A.2-overexpressing CD4+ cells generated elevated levels of IL-4, a key factor that propels the differentiation of naive CD4+ T cells into Th2 subset. The hyporesponsiveness of Ly-6A.2 transgenic CD4+ T cells is dependent on the interaction of Ly-6A.2 T cells with the APCs and can be reversed by blocking the interaction between Ly-6A.2 and a recently reported candidate ligand. Overexpression of Ly-6A.2 in CD4+ T cells reduced their Ca(2+) responses to TCR stimulation, therefore suggesting effects of Ly-6A.2 signaling on membrane proximal activation events. In contrast to the observed Ag-specific hyporesponsiveness, the Ly-6A.2 transgenic CD4+ T cells produced IL-4 independent of the interactions between Ly-6A.2 and the candidate Ly-6A.2 ligand. Our results suggest that 1) interaction of Ly-6A.2 with a candidate ligand regulates clonal expansion of CD4+ Th cells in response to an Ag (these results also provide further functional evidence for presence of Ly-6A.2 ligand on APC); and 2) Ly-6A.2 expression on CD4+ T cells promotes production of IL-4, a Th2 differentiation factor.  相似文献   

20.
Ly-6A/E is a phosphatidylinositol (PI)-linked membrane protein whose expression is induced or upregulated on normal murine T and B cells by IFN-gamma. Cross-linkage of Ly-6A/E expressed on normal murine T cells stimulates Ca2+ translocation, and in the presence of a protein kinase C (PKC) activator, lymphokine secretion, and cellular proliferation. Utilizing an anti-Ly-6A/E mAb, we studied the effect of cross-linking Ly-6A/E on IFN-gamma-treated resting B cells, for Ca2+ translocation, PI turnover, and cellular proliferation. Since these events are known to be stimulated by cross-linkage of B cell membrane (m)Ig, we compared the changes mediated through these respective membrane proteins. We show that cross-linkage of B cell Ly-6A/E stimulates a large, rapid, and sustained increase in the concentration of intracellular free calcium ([Ca2+]i) comparable in magnitude, though somewhat delayed, relative to that observed after cross-linking of mIg. Cross-linkage of B cell Ly-6A/E does not, however, stimulate detectable PI turnover, in contrast to PI turnover induced by ligation of mIg. Both the Ly-6A/E- and mIg-mediated increase in [Ca2+]i occur through mobilization of internal Ca2+ stores as well as entry of Ca2+ into the cell from the extracellular compartment. Ly-6A/E-mediated Ca2+ translocation appears to be under the regulation of PKC in that short term pretreatment of B cells with the PKC activator, PMA, inhibits the Ly-6A/E- as well as the mIg-mediated increase in [Ca2+]i, whereas prolonged exposure to PMA, under conditions that lead to depletion of PKC, results in an augmentation in Ca2+ translocation after ligation of either Ly-6A/E or mIg. Co-capping studies indicate that Ly-6A/E and mIg cap independently in the B cell membrane, thus suggesting that the Ly-6A/E-induced effects on Ca2+ translocation are not mediated through simultaneous modulation of mIg. Anti-Ly6A/E, by itself, does not stimulate an increase in [3H]thymidine incorporation by IFN-gamma-treated resting B cells, but induces a striking increase in the presence of PMA. By contrast, anti-Ig by itself stimulates significant increases in [3H]thymidine incorporation that is inhibited by PMA. Thus, Ly-6A/E is a potent mediator of B cell activation that may use a signal transduction system in quiescent B cells that is distinct from that of the Ag receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号