首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The process of chloroplast division during mitosis in Chlamydomonas reinhardi is followed with the electron microscope. The pyrenoid and the chloroplast reproduce by fission. The dividing chloroplast contains regions of dense material that superficially resemble pyrenoids, but it is concluded that the formation of the dense material is not related to pyrenoid formation in C. reinhardi. The dense material appears to be localized over regions of chloroplast DNA.  相似文献   

3.
Cell division in Chlamydomonas moewusii is described. The cells become immobile with flagellar abscission prior to mitosis. The basal bodies migrate toward the nucleus and become intimately associated with the nuclear membrane which is devoid, of ribosomes where adjacent to the basal bodies. The basal bodies replicate at preprophase. The nucleolus fragments at this stage. By prophase the basal body pairs have migrated, to the nuclear poles. Spindle fibers become prominent in the nucleus. The nuclear membrane does not fragment. The nucleus assumes a crescent-form by metaphase. Polar fenestrae are absent. Kinetochores appear at anaphase. An interzonal spindle elongates as the chromosomes move to the nuclear poles. Daughter nuclei become abscised by an ingrowth of nuclear membrane, leaving behind a separated, degenerating interzonal spindle. Ribosomes reappear on the outer nuclear membrane at late telophase. Nucleoli reform early in cytokinesis. The cleavage furrow, associated microtubules, and endoplasmic reticulum comprise the phycoplast. Cytokinesis proceeds rapidly after the completion of telophase. The basal body-nucleus relationship becomes reorganized into the typical interphase condition late in cytokinesis. Specific and predictable organelle rearrangements during mitosis have been described. Cell division in C. moewusii is compared with other algae, especially C. reinhardi.  相似文献   

4.
5.
At the ultrastructural level, cell division in Ochromonas danica exhibits several unusual features. During interphase, the basal bodies of the 2 flagella replicate and the chloroplast divides by constriction between its 2 lobes. The rhizoplast, which is a fibrous striated root attached to the basal body of the long flagellum, extends under the Golgi body to the surface of the nucleus in interphase cells. During proprophase, the Golgi body replicates, apparently by division, and a daughter rhizoplast, appears. During prophase, the 2 pairs of flagellar basal bodies, each with their accompanying rhizoplast and Golgi body, begin to separate. Three or 4 flagella are already present at this stage. At the same time, there is a proliferation of microtubules outside the nuclear envelope. Gaps then appear in the nuclear envelope, admitting the microtubules into the nucleus, where they form a spindle. A unique feature of mitosis in O. danica is that the 2 rhizoplasts form the poles of the spindle, spindle microtubules inserting directly onto the rhizoplasts. Some of the spindle microtubules extend from pole to pole; others appear to attach to the chromosomes. Kinetochores, however, are not present. The nuclear envelope breaks down, except, in the regions adjacent, to the chloroplasts; chloroplast ER remains intact throughout mitosis. At late anaphase the chromosomes come to lie against part of the chloroplast ER. This segment of the chloroplast ER appears to be incorporated as part of the reforming nuclear envelope, thus reestablishing the characteristic nuclear envelope—chloroplast ER association of the interphase cell.  相似文献   

6.
The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.  相似文献   

7.
The procedure described is applicable to 11 mutant strains of C. reinhardi Dangeard. In general, freezing resulted in 3-log loss of viable cells. Nevertheless, the phenotypic response of the recovered viable cells to selected media was the same as before freezing. There was no further reduction in viability after 6–17 months storage at liquid N2 temperatures.  相似文献   

8.
THE TIMING OF DIVISION IN CHLAMYDOMONAS   总被引:3,自引:2,他引:1  
  相似文献   

9.
Cell division in Pyramimonas parkeae is described and compared with some other green algae. The first indication of mitosis is division of the chloroplast, accompanied by growth of a prominent microbody, followed by replication of the 4 basal bodies. Also closely timed with this is the replication of the Golgi and other components of the basal body complex. Two basal body complexes separate, each taking a position at either pole of the nucleus which has migrated to a characteristic position just beneath the plasmalemma of a broadened and flattened flagellar pit. Cytokinesis is accomplished by the fusion of ducts and vesicles with the simultaneous release of scales to the newly formed exterior. Cells swim throughout division.  相似文献   

10.
Wild-type cells of the unicellular green alga Chlamydomonas reinhardi have been grown for several generations in the presence of rifampicin, an inhibitor of chloroplast DNA-dependent RNA polymerase, spectinomycin and chloramphenicol, two inhibitors of protein synthesis on chloroplast ribosomes, and cycloheximide, an inhibitor of protein synthesis on cytoplasmic ribosomes. The effects of cycloheximide are complex, and it is concluded that this inhibitor cannot give meaningful information about the cytoplasmic control over the synthesis of chloroplast components in long-term experiments with C. reinhardi. In the presence of acetate and at the appropriate concentrations, the three inhibitors of chloroplast protein synthesis retard growth rates only slightly and do not affect the synthesis of chlorophyll; however, photosynthetic rates are reduced fourfold after several generations of growth. Each inhibitor produces a similar pattern of lesions in the organization of chloroplast membranes. Only rifampicin prevents the production of chloroplast ribosomes.  相似文献   

11.
12.
13.
THE FINE STRUCTURE OF THE PURKINJE CELL   总被引:1,自引:9,他引:1       下载免费PDF全文
This paper describes the fine structure of the Purkinje cell of the rat cerebellum after fixation by perfusion with 1 per cent buffered osmium tetroxide. Structures described include a large Golgi apparatus, abundant Nissl substance, mitochondria, multivesicular bodies, osmiophilic granules, axodendritic and axosomatic synapses, the nucleus, the nucleolus, and the nucleolar body. A new and possibly unique relationship between mitochondria and subsurface cisterns is described. Possible functional correlations are discussed.  相似文献   

14.
The cytoplasmic organization of a normal green strain of the alga Chlamydomonas reinhardi has been investigated with the electron microscope using thin sections of OsO4 fixed material. The detailed organization of the chloroplast has been of special interest. The chloroplast, a cup-shaped organelle, surrounded by a double membrane, consists of: (1) discs about 1 micron in diameter, considered to represent the basic structural unit of the chloroplast, and each composed of a pair of membranes joined at their ends to form a flat closed vesicle; the discs are grouped into stacks resembling the grana of higher plants; (2) matrix material of low density in which the discs are embedded; (3) starch grains; (4) the pyrenoid, a non-lamellar region associated with starch synthesis, and containing tubules which connect with the lamellae; (5) the eyespot, a differentiated region containing two or three plates of hexagonally packed, carotenoid-containing granules, located between discs, and associated with phototaxis. In addition to the chloroplast, the cytoplasm contains various membranous and granular components, including mitochondria, endoplasmic reticulum, and dictyosomes, identified on the basis of morphological comparability with structures seen in animal cells. The nucleus, not investigated in detail in this study, contains a large, granular nucleolus and is surrounded by a nuclear envelope which is provided with pores and exhibits instances of continuity with the endoplasmic reticulum of the cytoplasm.  相似文献   

15.
DISAPPEARANCE OF NITRATE REDUCTASE ACTIVITY FROM CHLAMYDOMONAS REINHARDI   总被引:2,自引:2,他引:0  
Nitrate reductase activity was induced in Chlamydomonas reinhardi following addition of nitrate. Enzymic activity was assayed in cell-free supernatants and in whole cells whose permeability had been increased by freezing. Nitrate reductase activity in cells decreased rapidly when CO2-fixation was prevented by (a) darkening cultures, (b) aerating cultures with CO2-free air, or (c) addition of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). A smaller loss of nitrate reductase activity from darkened cells occurred when (a) acetate-adapted cells were supplied with acetate, or (b) cells were allowed to accumulate carbon reserves by nitrogen starvation before darkening. It was concluded that maintenance of nitrate reductase activity was dependent upon the availability of a suitable carbon source.  相似文献   

16.
17.
Photosynthetic electron transport is markedly affected in mixotrophic cells of ac-20 because they lack the capacity to form the wild-type level of cytochrome 559, as well as Q, the quencher of fluorescence of photochemical system II. The other components of the electron-transport chain, as well as reactions dependent upon photochemical system I, are unaffected in the mutant strain. These observations are discussed in terms of the previously reported effects of the ac-20 mutation on CO2 fixation and ribulose-1,5-diphosphate carboxylase activity.  相似文献   

18.
THE FINE STRUCTURE OF EPIDERMAL CELL MUCILAGES OF ROOTS   总被引:3,自引:2,他引:1  
  相似文献   

19.
The fine structure of the ac-20 strain of Chlamydomonas reinhardi is described. Cells grown mixotrophically in the presence of acetate have a highly disordered chloroplast membrane organization and usually lack pyrenoids. Chloroplast ribosome levels are only 5–10% of wild-type levels. Cells grown phototrophically without acetate possess more chloroplast ribosomes and have more normal membrane and pyrenoid organization. Chloroplast ribosome levels rise rapidly when cells are transferred from acetate to minimal medium, whereas membrane reorganization occurs only after a lag. These results, combined with earlier studies of the photosynthetic properties of the mutant strain, suggest that proper membrane organization, Photosystem II activity, and ribulose-1,5-diphosphate carboxylase formation are dependent on the presence of chloroplast ribosomes. Other chloroplast components tested are unaffected by a 10-fold reduction in levels of chloroplast ribosomes.  相似文献   

20.
THE FINE STRUCTURE OF THE LANGERHANS CELL GRANULE   总被引:7,自引:4,他引:3       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号