首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applications for atomic force microscopy of DNA.   总被引:11,自引:2,他引:9       下载免费PDF全文
Tapping mode atomic force microscopy (AFM) of DNA in propanol, dry helium, and aqueous buffer each have specific applications. Resolution is best in propanol, which precipitates and immobilizes the DNA and provides a fluid imaging environment where adhesive forces are minimized. Resolution on exceptional images of DNA appears to be approximately 2 nm, sufficient to see helix turns in detail, but the smallest substructures typically seen on DNA in propanol are approximately 6-10 nm in size. Tapping AFM in dry helium provides a convenient way of imaging such things as conformations of DNA molecules and positions of proteins on DNA. Images of single-stranded DNA and RecA-DNA complexes are presented. In aqueous buffer DNA molecules as small as 300 bp have been imaged even when in motion. Images are presented of the changes in shape and position of circular plasmid DNA molecules.  相似文献   

2.
3.
The biophysical properties of DNA suggest its use for applications beyond serving as the genetic material. Several recent reports describe the use of covalently attached double-stranded DNA for controlling the structures of other macromolecules such as protein and RNA. These exploitations of DNA rigidity are conceptually distinct from many other studies in the area of "DNA nanotechnology". Double-stranded DNA constraints provide a means of introducing selective tension onto other molecules. This should facilitate fundamental investigations of macromolecular folding landscapes and tertiary interactions, as well as allow study of the mechanotransduction of biochemical signals. Use of a DNA constraint as the key element of a sensor has already been demonstrated, and such applications will be enhanced by improvements in the signal readout methods. If practical challenges such as delivery and stability can be addressed, these new efforts may also enable development of selective sensors for in vivo applications.  相似文献   

4.
The majority of proteins function when associated in multimolecular assemblies. Yet, prediction of the structures of multimolecular complexes has largely not been addressed, probably due to the magnitude of the combinatorial complexity of the problem. Docking applications have traditionally been used to predict pairwise interactions between molecules. We have developed an algorithm that extends the application of docking to multimolecular assemblies. We apply it to predict quaternary structures of both oligomers and multi-protein complexes. The algorithm predicted well a near-native arrangement of the input subunits for all cases in our data set, where the number of the subunits of the different target complexes varied from three to ten. In order to simulate a more realistic scenario, unbound cases were tested. In these cases the input conformations of the subunits are either unbound conformations of the subunits or a model obtained by a homology modeling technique. The successful predictions of the unbound cases, where the input conformations of the subunits are different from their conformations within the target complex, suggest that the algorithm is robust. We expect that this type of algorithm should be particularly useful to predict the structures of large macromolecular assemblies, which are difficult to solve by experimental structure determination.  相似文献   

5.
Electron cryomicroscopy is a high-resolution imaging technique that is particularly appropriate for the structural determination of large macromolecular assemblies, which are difficult to study by X-ray crystallography or NMR spectroscopy. For some biological molecules that form two-dimensional crystals, the application of electron cryomicroscopy and image reconstruction can help elucidate structures at atomic resolution. In instances where crystals cannot be formed, atomic-resolution information can be obtained by combining high-resolution structures of individual components determined by X-ray crystallography or NMR with image-derived reconstructions at moderate resolution. This can provide unique and crucial information on the mechanisms of these complexes. Finally, image reconstructions can be used to augment X-ray studies by providing initial models that facilitate phasing of crystals of large macromolecular machines such as ribosomes and viruses.  相似文献   

6.
DNA co-crystallization with Dps family proteins is a fundamental mechanism, which preserves DNA in bacteria from harsh conditions. Though many aspects of this phenomenon are well characterized, the spatial organization of DNA in DNA–Dps co-crystals is not completely understood, and existing models need further clarification. To advance in this problem we have utilized atomic force microscopy (AFM) as the main structural tool, and small-angle X-scattering (SAXS) to characterize Dps as a key component of the DNA-protein complex. SAXS analysis in the presence of EDTA indicates a significantly larger radius of gyration for Dps than would be expected for the core of the dodecamer, consistent with the N-terminal regions extending out into solution and being accessible for interaction with DNA. In AFM experiments, both Dps protein molecules and DNA–Dps complexes adsorbed on mica or highly oriented pyrolytic graphite (HOPG) surfaces form densely packed hexagonal structures with a characteristic size of about 9 nm. To shed light on the peculiarities of DNA interaction with Dps molecules, we have characterized individual DNA–Dps complexes. Contour length evaluation has confirmed the non-specific character of Dps binding with DNA and revealed that DNA does not wrap Dps molecules in DNA–Dps complexes. Angle analysis has demonstrated that in DNA–Dps complexes a Dps molecule contacts with a DNA segment of ~6 nm in length. Consideration of DNA condensation upon complex formation with small Dps quasi-crystals indicates that DNA may be arranged along the rows of ordered protein molecules on a Dps sheet.  相似文献   

7.
Linear DNA, circular DNA, and circular DNA complexes with trivaline (TV), a synthetic oligopeptide, were imaged by atomic force microscopy (AFM) using mica as a conventional supporting substrate and modified highly ordered pyrolytic graphite (HOPG) as an alternative substrate. A method of modifying the HOPG surface was developed that enabled the adsorption of DNA and DNA-TV complexes onto this surface. On mica, both purified DNA and DNA-TV complexes were shown to undergo significant structural distortions: DNA molecules decrease in height and DNA-TP displays substantial changes in the shape of its circular compact structures. Use of the HOPG support helps preserve the structural integrity of the complexes and increase the measured height of DNA molecules up to 2 nm. AFM with the HOPG support was shown to efficiently reveal the particular points of the complexes where, according to known models of their organization, a great number of bent DNA fibers meet. These results provide additional information on DNA organization in its complexes with TV and are also of methodological interest, since the use of the modified HOPG may widen the possibilities of AFM in studying DNA and its complexes with various ligands.  相似文献   

8.
DNA-putrescine complexes were studied by electron-microscopy with the use of protein-free method. The latter gives the opportunity to investigate the interaction of DNA molecules spread on the surface layer of hypophase and the polyamine molecules in the thick layer of hypophase. Polyamine concentration varied from 5 x 10(-4) mM to 5 x 10(-1) mM. Under the low concentration of putrescine the complexes are represented by agglomerations of kinked knobbed fibres 10 to 20 nm thick, consisting of several fibres of duplex DNA. Upon increasing of putrescine concentration from 5 x 10(-4) to 1.5 x 10(-1) mM, the fibres become more thick (up to 25 nm), highly twisted and have the appearance of cylinders. Very often in the composition of complexes, it is possible to encounter the circular structures, which were formed at the expense of intermolecular interaction of different parts of the complex. The circular structures can serve as "embryos" of toroids of different sizes, that is of different degree of saturation with DNA and putrescine. At the concentration of putrescine 5 x 10(-1) mM the complexes have the appearance of toroids and structures on the basis of toroids, cylinders. The scheme of possible transitions of fibres of various thickness is proposed. The regularities of the compactization process, stimulated by polyamines, don't depend on the degree of compactization (the thickness of compacting fibre), that is they are similar for duplex DNA and for the fibres 25 nm thick, consisting of dozens of DNA molecules.  相似文献   

9.
Using DNA molecules to construct a structural scaffold for nanotechnology is largely accepted. In this article, we report on two methods for constructing a figure-eight structure of DNA molecules having a relatively high yield that could be used further as a scaffold for nanotechnology applications. In the first method, two plasmids were constructed that, on digestion with a restriction endonuclease producing nicks in the corresponding sites and after heating, produced complementary single-stranded sequences, enabling the plasmids to hybridize to each other and forming a figure-eight structure. The formation of the figure-eight structure was analyzed by restriction analysis and gel electrophoresis as well as by atomic force microscopy. The second method makes use of the bacteriophage M13 that is obtained as either a single- or double-stranded circular DNA molecule. Two M13 molecules harboring complementary sequences were constructed and produced a figure-eight structure on hybridization. The methods described here could be used further for the construction of nanoelectronic devices.  相似文献   

10.
Progress in structural biology studies of supercoiled DNA and its complexes with regulatory proteins depends on the availability of reliable and routine procedures for site-specific labeling of circular molecules. For this, we made use of oligonucleotide uptake by plasmid DNA under negative superhelical tension. Subsequent circularization of the oligonucleotide label facilitated by an oligonucleotide scaffold results in its threading between the two strands of duplex DNA. Several lines of evidence, including direct AFM mapping of the label, show that the circular oligonucleotide is stably localized at its target, an A+T rich region. The specific binding mode when the oligonucleotide threads the double helix results in a DNA kink that tends to occupy an apical position in a plectonemically wound supercoiled DNA, similar to the positioning of an A-tract bend. Site-specific labels may allow visualization techniques, such as electron and atomic force microscopies, to reliably map protein binding sites, identify local alternative structures in supercoiled DNA, and monitor structural dynamics of DNA molecules in real time. Site-specific oligonucleotide reactions with DNA may also have application in biotechnology and gene therapy.  相似文献   

11.
12.
Water molecules immobilized on a protein or DNA surface are known to play an important role in intramolecular and intermolecular interactions. Comparative analysis of related three-dimensional (3D) structures allows to predict the locations of such water molecules on the protein surface. We have developed and implemented the algorithm WLAKE detecting "conserved" water molecules, i.e. those located in almost the same positions in a set of superimposed structures of related proteins or macromolecular complexes. The problem is reduced to finding maximal cliques in a certain graph. Despite exponential algorithm complexity, the program works appropriately fast for dozens of superimposed structures. WLAKE was used to predict functionally significant water molecules in enzyme active sites (transketolases) as well as in intermolecular (ETS-DNA complexes) and intramolecular (thiol-disulfide interchange protein) interactions. The program is available online at http://monkey.belozersky.msu.ru/~evgeniy/wLake/wLake.html.  相似文献   

13.
14.
Linear DNA, circular DNA, and circular DNA complexes with trivaline (TV), a synthetic oligopeptide, were imaged by atomic force microscopy (AFM) using mica as a conventional supporting substrate and modified highly ordered pyrolytic graphite (HOPG) as an alternative substrate. A method of modifying the HOPG surface was developed that enabled the adsorption of DNA and DNA–TV complexes onto this surface. On mica, both purified DNA and DNA–TV complexes were shown to undergo significant structural distortions: DNA molecules decrease in height and DNA–TV displays substantial changes in the shape of its circular compact structures. Use of the HOPG support helps preserve the structural integrity of the complexes and increase the measured height of DNA molecules up to 2 nm. AFM with the HOPG support was shown to efficiently reveal the particular points of the complexes where, according to known models of their organization, a great number of bent DNA fibers meet. These results provide additional information on DNA organization in its complexes with TV and are also of methodological interest, since the use of the modified HOPG may widen the possibilities of AFM in studying DNA and its complexes with various ligands.  相似文献   

15.
The osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If all are released from macromolecular surfaces, this result is consistent with a net reduction of solvent-accessible surface area of 2370 +/- 550 A. This area is only slightly smaller than the macromolecular interface calculated for a crystalline repressor dimer-O1 complex but is significantly smaller than that for the corresponding complex with the symmetrical optimized O(sym) operator. The transfer of repressor from site O1 to nonspecific DNA is accompanied by the net uptake of 93 +/- 10 water molecules. Together these results imply that formation of a nonspecific complex is accompanied by the net release of 165 +/- 43 water molecules. The enhanced stabilities of repressor-DNA complexes with increasing osmolality may contribute to the ability of Escherichia coli cells to tolerate dehydration and/or high external salt concentrations.  相似文献   

16.
Macromolecular crystallography has been, for the last few decades, the main source of structural information of biological macromolecular systems and it is one of the most powerful techniques for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. In addition, it is also an extremely powerful tool for drug design. Recent technological and methodological developments in macromolecular X-ray crystallography have allowed solving structures that until recently were considered difficult or even impossible, such as structures at atomic or subatomic resolution or large macromolecular complexes and assemblies at low resolution. These developments have also helped to solve the 3D-structure of macromolecules from twin crystals. Recently, this technique complemented with cryo-electron microscopy and neutron crystallography has provided the structure of large macromolecular machines with great precision allowing understanding of the mechanisms of their function.  相似文献   

17.
The lipocalins, a diverse family of small extracellular ligand proteins, display a remarkable range of different molecular properties. While their binding of small hydrophobic molecules, and to a lesser extent their binding to cell surface receptors, is well known, it is shown here that formation of macromolecular complexes is also a common feature of this family. Analysis of known crystallographic structures reveals that the lipocalins process a conserved common structure: an antiparallel β-barrel with a repeated +1 topology. Comparisons show that within this overall similarity the structure of individual proteins is specifically adapted to bind their particular ligands, forming a binding site from an internal cavity (within the barrel) and/or an external loop scaffold, which gives rise to different binding modes that reflects the need to accommodate ligands of different shape, size, and chemical structure. The architecture of the lipocalin fold suggests that the both the ends and sides of this barrel are topologically distinct, differences also apparent in analyses of structural and sequence variation within the family. These different can be linked to experimental evidence suggesting a possible functional dichotomy between the two ends of the lipocalin fold. The structurally invariant end of the molecule may be implicated in general binding small ligands and forming macromolecular complexes via an exposed binding surface.  相似文献   

18.
In vitro biochemical assays are typically performed using very dilute solutions of macromolecular components. On the other hand, total intracellular concentrations of macromolecular solutes are very high, resulting in an in vivo environment that is significantly "volume-occupied." In vitro studies with the DNA replication proteins of bacteriophage T4 have revealed anomalously weak binding of T4 gene 45 protein to the rest of the replication complex. We have used inert macromolecular solutes to mimic typical intracellular solution conditions of high volume occupancy to investigate the effects of "macromolecular crowding" on the binding equilibria involved in the assembly of the T4 polymerase accessory proteins complex. The same approach was also used to study the assembly of this complex with T4 DNA polymerase (gene 43 protein) and T4 single-stranded DNA binding protein (gene 32 protein) to form the five protein "holoenzyme". We find that the apparent association constant (Ka) of gene 45 for gene 44/62 proteins in forming both the accessory protein complex and the holoenzyme increases markedly (from approximately 7 x 10(6) to approximately 3.5 x 10(8) M-1) as a consequence of adding polymers such as polyethylene glycol and dextran. Although the processivity of the polymerase alone is not directly effected by the addition of such polymers to the solution, macromolecular crowding does significantly stabilize the holoenzyme and thus indirectly increases the observed processivity of the holoenzyme complex. The use of macromolecular crowding to increase the stability of multienzyme complexes in general is discussed, as is the relevance of these results to DNA replication in vivo.  相似文献   

19.
A long sought goal in the physical chemistry of macromolecular structure, and one directly relevant to understanding the molecular basis of biological recognition, is predicting the geometry of bimolecular complexes from the geometries of their free monomers. Even when the monomers remain relatively unchanged by complex formation, prediction has been difficult because the free energies of alternative conformations of the complex have been difficult to evaluate quickly and accurately. This has forced the use of incomplete target functions, which typically do no better than to provide tens of possible complexes with no way of choosing between them. Here we present a general framework for empirical free energy evaluation and report calculations, based on a relatively complete and easily executable free energy function, that indicate that the structures of complexes can be predicted accurately from the structures of monomers, including close sequence homologues. The calculations also suggest that the binding free energies themselves may be predicted with reasonable accuracy. The method is compared to an alternative formulation that has also been applied recently to the same data set. Both approaches promise to open new opportunities in macromolecular design and specificity modification.  相似文献   

20.
Cryoelectron tomography (CET) combines the potential of three-dimensional (3D) imaging with a close-to-life preservation of biological samples. It allows the examination of large and stochastically variable structures, such as organelles or whole cells. At the current resolution it becomes possible to visualize large macromolecular complexes in their functional cellular environments. Pattern recognition methods can be used for a systematic interpretation of the tomograms; target molecules are identified and located based on their structural signature and their correspondence with a template. Here, we demonstrate that such an approach can be used to map 70S ribosomes in an intact prokaryotic cell (Spiroplasma melliferum) with high fidelity, in spite of the low signal-to-noise ratio (SNR) of the tomograms. At a resolution of 4.7 nm the average generated from the 236 ribosomes found in a tomogram is in good agreement with high resolution structures of isolated ribosomes as obtained by X-ray crystallography or cryoelectron microscopy. Under the conditions of the experiment (logarithmic growth phase) the ribosomes are evenly distributed throughout the cytosol, occupying approximately 5% of the cellular volume. A subset of about 15% is found in close proximity to and with a distinct orientation with respect to the plasma membrane. This study represents a first step towards generating a more comprehensive cellular atlas of macromolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号