首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zooplankton biomass (as dry weight), respiration and ammonia excretion were studied in three different size classes (200–500, 500–1000 and >1000 μm) in the Bransfield Strait during December 1991. Average mesozooplankton biomass was 86.45 ± 56.74 mg · dry weight · m−2, which is in the lower range of the values cited in the literature for polar waters. Higher biomass was observed in the Weddell water. The small size fraction accounted for about 50% of total biomass while the largest one represented 35%. Rather high metabolic rates were found, irrespective of whether the organisms were incubated in the presence of food. No significant differences were observed in mass specific respiration and ammonia excretion rates between different temperatures of incubation (0.2–2.3°C) and between the size classes studied. Because of the very low biomass values observed, the metabolic requirements of mesozooplankton during December represented a small fraction of the primary production. Accepted: 5 September 1998  相似文献   

2.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

3.
The Bransfield Strait is a semi-enclosed sea located in the northern part of the West Antarctic Peninsula region, which is subject to strong climatic changes. The bathymetry is complex and comprises three basins that are separated from each other by shallow sills. Oceanographic measurements of the Bransfield Strait region are available since the first half of the twentieth century. In this study, hydrographic data from the ANT-XXIX/3 expedition of RV Polarstern in 2013 are presented to describe the actual physical state of the art, particularly for biological work done during that cruise. The general hydrographic situation of the Bransfield Strait in 2013 is found to be similar to observations from the early twentieth century. The Bransfield Strait’s water masses are modified versions of the water masses from the adjacent seas. The different water masses within the Bransfield Strait are separated by two fronts, the so-called Bransfield and Peninsula Front. While the Bransfield Front is most pronounced in the central and southwestern Bransfield Strait, the Peninsula Front can be identified from the northeastern to the central part of the study domain. Based on an analysis of water mass properties around the Antarctic Peninsula and close to the Antarctic Sound, a notable inflow of Shelf Water from the Weddell Sea through the Antarctic Sound appears unlikely.  相似文献   

4.
Phytoplankton biomass and productivity were measured during two cruises in the Bransfield Strait in December 1991 (D91) and January/February 1993 (J93). Strong seasonal variability in productivity values was observed due to differences in the physiological response of phytoplankton. However, although the photosynthetic capacity of phytoplankton was markedly lower in D91 [P m B =0.61 ± 0.25 mg C (mg Chla)−1 h−1] than in J93 [P m B =2.18 ± 0.91 mg C (mg Chla)−1 h−1], average water column chlorophyll values in different areas of the strait were approximately similar in D91 (49–78 mg Chla m−2) and J93 (22–76 mg Chla m−2). The spatial distribution of chlorophyll was patchy and generally associated with the influence of the different water masses that meet together in the Bransfield Strait. No correlation was found between the mixed layer depth and either the integrated chlorophyll or the productivity. Our results suggest that major phytoplankton blooms in the Bransfield Strait are advected from the nearby Gerlache Strait or Bellingshausen Sea following the main eastward surface currents. Accepted: 5 July 1998  相似文献   

5.
Recent global warming reduces surface water salinity around the Antarctic Peninsula as a result of the glacial meltwater runoff, which increases the occurrence and abundance of certain phytoplankton groups, such as cryptophytes. The dominance of this particular group over diatoms affects grazers, such as Antarctic krill, which preferentially feed on diatoms. Using three late summer data sets from the Bransfield Strait (2008–2010), we observed variations in the dominant phytoplankton groups determined by HPLC/CHEMTAX pigment analysis and confirmed by microscopy. Results indicate that the dominance of diatoms, particularly in 2008 and 2009, was associated with a deeper upper mixed layer (UML), higher salinity and warmer sea surface temperature. In contrast, cryptophytes, which were dominant in 2010, were associated with a shallower UML, lower salinity and colder sea surface temperatures. The low diatom biomass observed in the summer of 2010 was associated with high nutrient concentration, particularly silicate, and low chlorophyll a (summer monthly average calculated from satellite images). The interannual variability here observed suggests a delayed seasonal succession cycle of phytoplankton in the summer of 2010 associated with a cold summer and a late ice retreat process in the region. This successional delay resulted in a notable decrease of primary producers’ biomass, which is likely to have impacted regional food web interactions. This study demonstrates the susceptibility of the Antarctic phytoplankton community structure to air temperature, which directly influences the timing of ice melting and consequently the magnitude of primary production and succession pattern of phytoplankton groups.  相似文献   

6.
Photosynthetic oxygen production by phytoplankton and community respiration in the Indian sector of the Antarctic Ocean were estimated from changes in oxygen concentrations in light and dark bottles. Gross production varied between 0.1 and 5.1 µmol O2 l-1 day-1. In the same water, community respiration (the sum of oxygen consumption by heterotrophs and phytoplankton) was 0.4-3.6 µmol O2 l-1 day-1, which accounted for 47-343% of the gross production. Algal and heterotrophic respirations were distinguished using some assumptions. These estimates showed that heterotrophic respiration accounted for most of the community respiration (70-91% depending upon the assumptions), indicating that heterotrophic respiration plays an important role in the mineralization of phytoplankton production in the surveyed sea area. Gross production rate correlated with chlorophyll a concentration, showing that the photosynthetic production rate of oxygen depends on the abundance of phytoplankton. Moreover, there was a significant relationship between gross production and community respiration rates. These regression equations suggested that negative net production occurred under the usually low concentration of chlorophyll observed in the Indian sector of the Antarctic Ocean. Hence, the net exchange of carbon dioxide due to biological processes through the sea surface seemed to be not as large as expected in the Antarctic Ocean, although the number of data were limited at this stage.  相似文献   

7.
The main aim of this work was to identify zooplankton assemblages by means of statistical testing and associate them with hydrographic properties of the Strait of Magellan and its microbasins. Zooplankton samples were collected by the R/V Cariboo in late austral summer 1991. Nineteen stations were sampled by BIONESS from the surface layer to 900 m depth, along the main longitudinal axis of the Strait of Magellan. There was a marked regional-scale pattern in zooplankton species diversity and richness, related to the hydrographical features of the Strait and its sub-basins. Six groups of samples were identified by cluster analysis in terms of zooplankton structure, and related to sea-water properties of temperature, salinity, and Chl a (Sperman’s correlation coefficient). Plankton assemblages of the Strait of Magellan seem closely linked to the remote sub-Antarctic and adjacent ocean biota, but populations may have independent evolutionary lines and population dynamics.  相似文献   

8.
Andrea Abelmann 《Polar Biology》1992,12(3-4):357-372
Summary The study of radiolarians collected during sediment trap experiments in the Drake Passage, the northern Powell Basin, and the King George Basin of the Bransfield Strait provides new information on the fluxes of radiolarian shells in Antarctic waters, on the annual flux pattern, the species distribution and its ecological significance, and on alteration processes of the radiolarian shells in the water column and at the sediment/water interface. A 28-month monitoring with time-series sediment traps in the Bransfield Strait indicates an annual flux pattern characterized by short-term flux pulses during austral summer, which reach daily fluxes of up to 5 × 103 shells m–2 and which account for more than 90% of the total annual flux. The distinct seasonal variations are linked to variations in the sea ice coverage. Other controlling factors are the production of phytoplankton and the impact by zooplankton grazers, e.g., krill. During the summer flux pulses the vertical fluxes of radiolarians range between ca. 3 and 21 × 104 shells m–2, values that are one or more orders of magnitudes lower than fluxes observed at sites in the tropical and northern high-latitude ocean. Significant lateral transport of radiolarians was documented during the austral summer in the Bransfield Strait by a factor of 10 increase of the radiolarian flux in the lower portion of the water column and the species composition trapped in deeper waters. Radiolarian assemblages associated with pelagic and neritic environments characterized by typical Antarctic taxa (Antarctissa spp.) and a group of species with bipolar distribution (e.g. Plectacantha oikiskos, Phormacantha hystrix), respectively, are distinguished. While the signal of polycystine radiolarians is relatively well recorded in the sediments, the shells of phaeodarians, which were observed at fluxes of up to 1 × 103 shells m–2day–1 in the upper portion of the water column, are almost completely dissolved during settling through the water column.  相似文献   

9.
Oxygen consumption, ammonia excretion and phosphate excretionrates were measured on the aggregate form (aggregated sexualblastozooid generation) and solitary form (solitary asexualoozooid generation) of Salpa thompsoni sampled from waters offthe Antarctic Peninsula from December 1999 to February 2000,in conjunction with body composition analysis (water, ash, carbon,nitrogen and phosphorus). The specific metabolic rates of S.thompsoni were weight-independent. No significant differencesbetween the aggregate and solitary forms were observed for theweight-specific rates with the exception of the oxygen consumptionrate on phosphorus weight. Metabolic loss estimated for theaggregate and solitary forms was 3.0 and 3.5% day–1 forbody carbon, 1.6 and 1.8% for body nitrogen, 3.9 and 10.6% forbody phosphorus, respectively. Contents of carbon (6.0% of dryweight for the aggregate form and 5.1% for the solitary form),nitrogen (1.5 and 1.3%) and phosphorus (0.15 and 0.11%) tendedto decrease with the increase of dry weight. All mean valuesof each body constituent (water, ash, C, N and P) for the aggregateand solitary forms were not significantly different in the samedry weight ranges.  相似文献   

10.
This study seeks to determine the effects of local hydrography on the distribution, abundance and feeding of chaetognaths in the Lazarev Sea, an area strongly controlled by physical processes which has been held responsible for initiating the Weddell Polynya. Zooplankton samples were taken at 39 stations on four transects located between 6°W and 3°E and from 60°S to 70°S between surface and 350 m. The dominant species, Eukrohnia hamata, accounted for 86.5% of all chaetognaths, followed by Sagitta gazellae (8.1%) and Sagitta marri (5.4%). These three species showed distinct vertical and horizontal distribution patterns. While E. hamata and S. marri had maximum abundances below 250 m depth, S. gazellae showed a narrow distribution band in the upper 150 m depth. The distribution pattern was strongly modified at the Greenwich meridian with an upward transport of a high abundance of deep dwelling organisms (S. marri and E. hamata) and a displacement of S. gazellae to the surface, likely coupled with the rise of the warm, saline halo around the Maud Rise. Small copepods were the main prey of all three chaetognath species. Feeding rates (FR) varied among species and depth. Sagitta marri showed the highest FR with 0.38 prey d−1, followed by S. gazellae and E. hamata (0.22 and 0.07 prey d−1). Feeding rates were usually highest in the 25–80-m stratum. Size distribution and maturity of E. hamata revealed a dominance of small and immature organisms along all depths and stations, suggesting that this area might be acting as an important source of recently spawned organisms to the surface.  相似文献   

11.
The formation of resting spores in diatoms is a common phenomenon in neritic environments. Here we report on resting spores of the genus Chaetoceros associated with a layer of increased chlorophyll fluorescence, at a depth of more than 200 m, north of Brabant Island and in Wilhelmina Bay, southeast coast of the Gerlache Strait (64°41.0′S, 62°0.5′W). Six species of Chaetoceros were identified by the morphology and size of the resting spores. Given that Chaetoceros spp., both in vegetative cells and as resting spores, are commonly found in Antarctic coastal surface waters, their location at depth could represent the pelagic “waiting” or “seeding” populations mentioned for other environments. Received: 25 November 1996 / Accepted: 16 November 1997  相似文献   

12.
Twenty one species of seabirds plus fur seals were observed at sea near the Antarctic Peninsula, between 60 °–68 °S, in May and June 1986, a season for which few published observations of marine animals are available for this area. Here we describe and quantify the importance of fishing activities as well as sea-ice cover and other environmental variables to the distribution patterns of birds and seals. The most striking aspect of the winter avifauna was its pronounced concentration near fishing trawlers operating on the continental shelf to the north and west of Elephant Island, and its temporal shift in response to the seasonal advance of the ice edge.  相似文献   

13.
The spatial distribution, biomass and size structure of key mesozooplankton species and micronekton in the Bransfield Strait (Antarctica) are described in relation to environmental variables during the austral summer 2001. Stratified (BIONESS) biological sampling at five depth-ranges and CTD casts were performed at 40 stations, including a cross-Strait transect. Six families, 11 genera and 16 species composed the total catch of larval and juvenile fish, which were more abundant in the upper 75 m. Trematomus scotti was the most abundant fish and large individuals dominated at depths >75 m. The fish distribution patterns were associated with the main water masses in the area and with bottom depth. Spatial segregation in density and biomass of krill (Euphausia superba) and salps (Salpa thompsoni) was observed at a relatively small scale, in relation to the main water masses. Also, size-related spatial segregation was found in krill. The present study suggests that the spatial distribution of krill, salps and early life stages of fish, are influenced by the main water masses in the Strait, and that species may adapt their reproductive strategies not only to seasonal production peaks, but to transport processes within water bodies that maximise their fitness through optimum temperature and/or trophic environments.  相似文献   

14.
15.
Summary The effect on adequate sample size and sample volume of the abundances of three predominant copepod species, Metridia gerlachei, Calanus propinquus and Calanoides acutus, were studied in Bransfield Strait (Antarctic Peninsula) in the austral summer of 1988–1989 and waters north of the Weddell Sea in 1989–1990. Copepod abundances were higher in the area north of the Weddell Sea, with the exception of Metridia gerlachei, which was evenly distributed over both areas. Local (intra-station) patchiness was not found, indicating random distribution over small areas. In the assessment of inter-station variability in Bransfield Strait, with standard error of the mean set arbitrarily at 20% of the average abundance and a sampling volume of 150 m3, the theoretical minimum sample size (number of sampling stations) ranged from 6 to 17 for juvenile copepods and from 11 to 25 for adults. The minimum number of stations in the area north of the Weddell Sea reached from 5 to 7, and from 7 to 10 respectively.  相似文献   

16.
The photosynthesis-irradiance relationships (P-I curves) ofnatural plankton samples were studied in the Weddell Sea ice-edgezone, between Elephant Island and South Orkney Islands, duringthe austral summer of 1988–89. Three water bodies weredistinguished in the region: Bellingshausen Sea waters modifiedafter flowing through Drake Passage and Bransfield Strait, WeddellSea waters and Weddell Sea waters modified by melting. The stationssituated in modified Bellingshausen waters showed a net phytoplanktoncomposition which was different from that of the other two waterbodies. Weddell Sea waters and Weddell Sea waters modified bymelting of sea ice had the same net phytoplankton composition.In the area of modified Weddell Sea waters, there was an accumulationof phytoplankton in the upper 40 m (>4 mg Chl m–1).pB, and  相似文献   

17.
 The relationships between hydrography and spatial distribution of several biochemical indicators of microplankton biomass (chlorophyll, protein and ATP) were studied in an area covering the eastern part of the Bransfield Strait and the northern part of the Weddell Sea, during Antarctic summer (January 1994). Four hydrographic zones were identified: (a) the northern part of the Bransfield Strait, covered by waters of Bellings- hausen Sea origin; (b) a Weddell Sea water mass that affected most of the study area; (c) the Weddell-Scotia Confluence waters, observed north of Elephant Island; and (d) waters influenced by ice melting, found towards the southeastern part of the sampled area. The highest values of biomass indicators (chlorophyll a, ATP and protein) were found in the zones affected by ice-melting processes and in waters from the Bellingshausen Sea. The lowest values of all biochemical parameters were found in the Weddell Sea and in the Weddell-Scotia Confluence waters. A high variability in the hydrographic structure and the distribution of biochemical indicators was observed. The degree of stabilization of the water column, the depth of the upper mixed layer and the grazing pressure of herbivorous zooplankton played a major role in the development, accumulation and spatial variability of microplankton biomass. Received: 15 August 1995/Accepted: 18 February 1996  相似文献   

18.
Information on the food and predation of zooplankton species is essential for an improved understanding of zooplankton community dynamics of the Southern Ocean. Feeding of dominant zooplankton species at locations across the neritic, slope and oceanic regions of Prydz Bay, Antarctica, was investigated with incubation experiments during austral spring/summer of 2009/2010 to identify the response of dominant copepods and krill to different feeding environments. Results showed distinct spatial and temporal variations in ingestion and filtration of predominant copepods and krill. In late spring, Calanoides acutus was inactive and the ingestion rate was only 1.30 μgC/ind/day. During early summer, a diatom bloom was in progress at station IS21, showing a peak biomass of Thalassiosira spp. and Fragilaria spp. Daily ingestion rates of Euphausia crystallorophias, C. acutus, Metridia gerlachei and Ctenocalanus citer were relatively high. By contrast, copepod ate predominantly ciliates in slope and oceanic regions where microplankton biomass were lower (<20 μgC/L). During late summer, microplankton of neritic regions, mainly composed of nano-sized Pseudo-nitzschia spp. and ciliates, was less than 10 μgC/L. C. acutus incubated in neritic regions mainly ate ciliates. The total microplankton biomass was lower (<5 μgC/L) and predominated by Pseudo-nitzschia spp. in slope regions north of Fram Bank, and daily ingestion rates of incubated copepods were less than 2.5 μgC/ind. Our results clearly demonstrated that copepods and krill had flexible feeding strategies to cope with temporally and spatially changing food availability in Prydz Bay. Meanwhile, ciliates appeared to represent an important carbon source for zooplankton, especially in regions with lower food concentrations.  相似文献   

19.
This study documents horizontal distribution and demography of Antarctic krill (Euphausia superba) from the Southern Ocean during January–March 2008. The cruise predominantly occurred in CCAMLR Subarea 48.6, where knowledge about the ecosystem is limited. E. superba were not found north of 52°S. The biomass, estimated from trawl catches, was highest (63.09 g/m2) at a station 680 km southeast of Bouvetøya and at two stations 1,400 and 600 km southeast and southwest of Bouvetøya, 54.67 and 61.38 g/m2, respectively. Body length ranged from 19 to 61 mm (N = 8,538), with a mean of 42.0 ± 6.4 mm (SD). The overall sex ratio was 1:1, 46.2% males (13.2% adults and 33.0% subadults), 46.1% females (33.6% adults and 12.5% subadults), while 7.5% were juveniles. Trawl stations dominated by adults were found west and north of Bouvetøya. Stations with high proportions of subadults and juveniles were mainly found southeast of the island. Four cluster groups were differentiated: analyzing data on krill sex proportions, maturity stages, hydrography, nutrients and chlorophyll concentrations. Two groups represented stations located in the northern part of the study area, where E. superba were absent; water temperatures were higher and the nutrient concentrations lower compared to the groups where E. superba were present. This study shows that bathymetric features like the North Weddell Ridge including Bouvetøya are important for concentrating krill probably due to water mass characteristics and advective processes which influence regional krill demography. The southern regions of CCAMLR sector 48.6 are essential for understanding regional krill recruitment and production.  相似文献   

20.
During January/February 1990 the floristic composition and biomass of diatoms and dinoflagellates in Terra Nova Bay (Ross Sea) were investigated. The study area included eight stations, seven of which were inshore and one offshore. Of the 94 taxa identified, 58 were diatoms and 34 were dinoflagellates. Cell densities were higher in surface layers and particularly at two stations, one located at the centre of the bay, and the other to the south of the Terra Nova station. While density data showed that the diatoms predominated over the dinoflagellates and over Phaeocystis sp., the biomass values were largely made up of the dinoflagellates contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号