共查询到20条相似文献,搜索用时 0 毫秒
1.
An optical CDMA (code division multiple access) system for the optical data storage using bacteriorhodopsin (BR) is reported as an application of the BR materials. The desired signal of multiple input can be recorded and reconstructed by use of orthogonal codes. An experimental setup is proposed and demonstrated. 相似文献
2.
Mitochondrial dysfunction has been associated with a variety of currently marketed therapeutics and has also been implicated in many disease states. Alterations in the rate of oxygen consumption are an informative indicator of mitochondrial dysfunction, but the use of such assays has been limited by the constraints of traditional measurement approaches. Here, we present a high-throughput, fluorescence-based methodology for the analysis of mitochondrial oxygen consumption using a phosphorescent oxygen-sensitive probe, standard microtitre plates and plate reader detection. The protocol describes the isolation of mitochondria from animal tissue, initial establishment and optimization of the oxygen consumption assay, subsequent screening of compounds for mitochondrial toxicity (uncoupling and inhibition), data analysis and generation of dose-response curves. It allows dozens of compounds (or hundreds of assay points) to be analyzed in a single day, and can be further up-scaled, automated and adapted for other enzyme- and cell-based screening applications. 相似文献
3.
4.
A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n = 11) were extracted from beef carcasses at 0 and 48 h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner–Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48 h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R2 = 0.6058). There was less variation in the 0 h capillary tube biosensor compared to the 0 h pre-column (P = 0.006) and post-column optical fiber biosensors (P = 0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality. 相似文献
5.
Human telomerase plays an important role in the cancerogenesis as it is up-regulated in 80-90% of malignant tumors. Thus, it is considered as a potential cancer marker and relevant target in oncology. Its task is the extension of guanine-rich strands of the telomere using an intrinsic RNA as the template. In this paper we developed a new biosensoric assay based on total internal reflection fluorescence measuring the activity of the telomerase on sensor surface. Two alternatives to determine the telomeric activity are demonstrated without the use of amplifying steps as e.g. PCR. The enzymatic inclusion of FITC-labeled dUTPs should reveal the synthesis process in real-time indicating the elongation of a phosphothioate telomeric substrate (PS/TS)-modified primer. Additionally the elongated strand was detected by hybridization with a FITC-labeled complementary linear DNA probe. As the telomeric guanine-rich single-stranded DNA adopts intramolecular quadruplex structures, it was necessary for the hybridization to linearize the telomeric DNA by increasing the reaction temperature to 48 degrees C. The comparison of the telomerase activity using labeled and unlabeled nucleotides indicated the inhibition effect of the FITC-labeled nucleotides slowing down the synthesis rate of the enzyme. It is shown with the modified biosensor that the PS/TS primer binds the telomerase from the HL-60 cell lysates, effectively elongating the immobilized primer. Furthermore no more purification steps were required as all measurements were performed with crude cell extract. 相似文献
6.
Thomas TP Myaing MT Ye JY Candido K Kotlyar A Beals J Cao P Keszler B Patri AK Norris TB Baker JR 《Biophysical journal》2004,86(6):3959-3965
The utility of a two-photon optical fiber fluorescence probe (TPOFF) for sensing and quantifying tumor fluorescent signals was tested in vivo. Xenograft tumors were developed in athymic mice using MCA207 cells expressing green fluorescent protein (GFP). The TPOFF probe was able to detect ex vivo fluorescence from excised tumors containing as little as 0.3% GFP-expressing cells. TPOFF results were similar to both flow-cytometric analysis of tumor cells after isolation and suspension, and fluorescence determined by microscope images of cryosectioned tumors. TPOFF was then used to measure GFP fluorescence from tumors in live mice. The fiber probe detected fluorescently-labeled Herceptin antibody targeted to HER2-expressing tumors in severe combined immunodeficient mice. Dendrimer nanoparticles targeted by folic acid and having 6-TAMRA as a fluorescent probe were also used to label KB cell tumors in vivo. The fiber probe documented a fourfold increase in tumor fluorescence in animals that received the targeted dendrimer. These results suggest TPOFF can be used as a minimally invasive system for identifying tumor markers and monitoring drug therapy. 相似文献
7.
Optical lock-in detection of FRET using synthetic and genetically encoded optical switches
下载免费PDF全文

Mao S Benninger RK Yan Y Petchprayoon C Jackson D Easley CJ Piston DW Marriott G 《Biophysical journal》2008,94(11):4515-4524
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins. 相似文献
8.
9.
A method allowing the evaluation of the structure and the calculation of the volume of a biofilm, using an optical microscope, is proposed based on the linear relation between the intensity of a pixel in biofilm images grabbed on the x-y plane and the corresponding number of cells in the z direction, which allows the calculation of the biofilm thickness. The method is intended to overcome the need for expensive microscopes to study biofilms. 相似文献
10.
Multi-photon laser scanning microscopy using an acoustic optical deflector 总被引:4,自引:0,他引:4
下载免费PDF全文

Multi-photon laser scanning microscopes have many advantages over single-photon systems. However, the speed and flexibility of currently available multi-photon microscopes are limited by the use of mechanical mirrors to steer pulsed radiation for fluorophore excitation. Here, we describe the multi-photon adaptation of a confocal microscope that uses an acoustic optical deflector (AOD) for beam steering. AODs are capable of very rapid scanning and, in addition, offer the flexibility of zooming, panning, and being adjustable for slow image acquisition. Because of the highly dispersive nature of AODs, pulsed radiation must be temporally compressed by introducing negative dispersion into the beam path. More critically, pulsed radiation must also be spatially compressed by introducing lateral dispersion into the beam path. This was accomplished by using two prisms in the external beam path and by introducing a third prism element subsequent to the AOD. The end result is an AOD-based multi-photon microscope that is capable of rapid imaging of physiological events as well as slow detection of weakly fluorescent biological samples. 相似文献
11.
Soboh B Kuhns M Braussemann M Waclawek M Muhr E Pierik AJ Sawers RG 《Biochemical and biophysical research communications》2012,423(1):158-163
Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher α-smooth muscle actin (α-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs. 相似文献
12.
Summary Flocculation was induced in a pure strain of the bacteria Zymomonas mobilis. When fermenting glucose to ethanol, cell densities of up to 40g/l were achieved and sustained in a 0.92 litre tower fermenter with dilution rates of up to 2.3 hr-1. A maximum productivity of 100g EtOH/l/hr with 98% conversion of the 105g/l glucose feed was achieved. The limitation to performance with increase in throughput arose from incomplete fermentation of the feed glucose, rather than washout of the flocculated bacteria. 相似文献
13.
King KD Anderson GP Bullock KE Regina MJ Saaski EW Ligler FS 《Biosensors & bioelectronics》1999,14(2):163-170
The Man-portable Analyte Identification System (MANTIS), the first fully automated, self-contained, portable fiber optic biosensor, was utilized for the detection of Staphylococcal Enterotoxin B (SEB), a bacterial toxin produced by Staphylococcus aureus that commonly causes food poisoning. Because of its remarkable toxicity and stability, SEB is considered a prime threat as a biological weapon of mass destruction. The assay for SEB was used to evaluate the MANTIS' ability to function in the presence of various environmental interferents. The sensor could reliably detect SEB spiked into liquid samples containing a variety of smoke particles. However, substantial interference occurred when SEB was mixed into matrices capable of adsorbing SEB, such as 1% solutions of clay, topsoil, or pollen. Of equal importance, none of the interferents produced false positives in the MANTIS. The MANTIS demonstrated the capability to perform simultaneous immunoassays rapidly in the field with little or no user intervention. 相似文献
14.
An optical fiber biosensor was developed for the evaluation of low Biochemical Oxygen Demand (BOD) values in river waters. Artificial wastewater (AWW) solution was employed as standards for the calibration of the BOD sensor. The response time of the sensor was 15 min, and the optimal BOD response was observed at 30 degrees C, pH 7.0. A linear relationship was obtained between the output voltage and BOD5 values, and the range of determination was 1-10 mg l(-1) BOD. The sensor response was almost not influenced by chloride ion up to 1000 mg l(-1), and also not affected by heavy metal ions (Fe3+, Cu2+, Mn2+, Cr3+, Zn2+). The BOD of river waters was estimated by using the optical fiber biosensor, and good correlation between the sensor and BOD5 test was obtained (r2 = 0.971). 相似文献
15.
16.
Carter JC Alvis RM Brown SB Langry KC Wilson TS McBride MT Myrick ML Cox WR Grove ME Colston BW 《Biosensors & bioelectronics》2006,21(7):1359-1364
We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photo-polymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micrometer-sized polymer) sensor diameter (92.2+/-2.2 microm), height (35.0+/-1.0 microm), and roundness (0.00072+/-0.00023). pH sensors were evaluated in terms of pH sensing ability (< or =2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail. 相似文献
17.
In this study, a biofilm photobioreactor with optical fibers that have additional rough surface (OFBP-R) was developed and it was shown that additional rough surface greatly enhanced the biofilm formation and thus increased the cell concentration, leading to an improvement in the hydrogen production performance. The effects of operational conditions, including the influent substrate concentration, flow rate, temperature and influent medium pH, on the performance of OFBP-R were also investigated. The experimental results showed that the optimum operational conditions for hydrogen production were: the influent substrate concentration 60 mM, flow rate 30 mL/h, temperature 30 °C and influent medium pH 7. Under the optimal operation conditions discovered in this work, the OFBP-R yielded fairly good and stable long-term performance with hydrogen production rate of 1.75 mmol/L/h, light conversion efficiency of 9.3% and substrate degradation efficiency of 75%. 相似文献
18.
A combination of a twin-screw extrusion and an acid-catalyzed hot water extraction process performed at a bench-scale was used to prepare high monomeric xylose hydrolysate for cellulosic production. The influences of the screw speed (30-150 rpm), barrel temperature (80-160 °C) and corresponding specific mechanical energy of the extruder on the structural properties of the pretreated rice straw, sugar concentration and conversion were investigated. The optimal condition for the extrusion step was determined to be 40 rpm with 3% H2SO4 at 120 °C; the optimal condition for the extraction step was determined to be 130 °C for 20 min. After the pretreatment at the optimal condition, 83.7% of the xylan was converted to monomeric xylose, and the concentration reached levels of 53.7 g/L. Finally, after the subsequent enzymatic hydrolysis, an 80% yield of the total saccharification was obtained. 相似文献
19.
Ken-ichi Hatano Satoshi Kikuchi Yohei Nakamura Hironobu Sakamoto Machiko Takigami Yasuyoshi Kojima 《Bioresource technology》2009,100(20):4697-4703
Molasses-based distilleries generate large volumes of a highly polluted and dark brown-colored wastewater. The present work describes the way in which an adsorbent-column chromatography can effectively remove the colorant and produce biomass ethanol from sugarcane or sugar beet molasses. It was found that the color and chemical oxygen demand of the resulting wastewater was respectively reduced by approximately 87% and 28% as compared with conventional molasses fermentation. Gas chromatography showed that the decolorized molasses maintained good ethanol productivity almost equal to that of the original molasses. Furthermore, it was revealed that the colorant concentrations of about 5 mg ml−1 in the medium were the most favorable for ethanolic fermentation. In summary, we have concluded that this method is the most effective when the adsorbent chromatography is performed just before molasses fermentation and that the decolorized molasses is an ideal substrate for fuel ethanol production. 相似文献
20.
A comparator which makes it possible to compare two wet gels or photographic negatives or autoradiograms through a flickering light system has been built. The system consists of two special-purpose projectors which combine the images on a digitizing platform. When the lights are switched On and off out of phase, the positions of the common components remain unchanged, whereas those that are spatially displaced appear to jump from side to side and those present in one image but not the other switch on and off. This produces a flickering image in which differences are readily seen. Commercial camera lenses were used to construct the projectors and the overall specifications for the system are given. The coordinates of both the displaced components, as well as the selected standards from the two images, are digitized and entered automatically into an on-line microcomputer. By using an iterative procedure for collecting records from several superimposable records of the gel, it is possible to compensate for the lack of total reproducibility over the whole gels. These coordinates are then normalized and superimposed on a master map through a television display using a curser to adjust the coordinates. The whole procedure can be repeated for many gels using a common reference gel in the comparator, and the result is a set of normalized coordinates which can be plotted on a single map to provide a final record of the experiments. 相似文献