首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood samples were obtained each month for 18 months in 1984-85 from wild-caught California ground squirrels. Circulating testosterone and total oestrogens were extracted from the plasma, measured by radioimmunoassay and compared with concurrent changes in plasma progesterone and prolactin in the same individuals. Male plasma testosterone concentrations peaked in January, shortly before mating, whereas female testosterone concentrations were low throughout the year. Female plasma oestrogen concentrations peaked in February, during the mating period. Juvenile males exhibited a transient increase in circulating testosterone in September, followed by testis growth, preputial separation, and the appearance of epididymal spermatozoa. Juvenile females exhibited a transient increase in circulating oestrogens in November. By the start of the first mating season after their births, neither juvenile males nor females differed significantly from same-sex adults with respect to plasma concentrations of oestrogen or testosterone. Plasma concentrations of progesterone and prolactin in killed individuals were similar to those obtained in previous studies of free-living S. beecheyi. Mean plasma concentrations of all measured hormones varied significantly with reproductive condition in adults of both sexes.  相似文献   

2.
A specific and sensitive homologous radioimmunoassay has been developed for equine prolactin, suitable for measuring prolactin concentrations in serum of horses. The sensitivity of the assay ranged from 0.4 to 0.6 ng/ml and the intra- and inter-assay coefficients of variation averaged 6.9 and 15.4%, respectively, for five doses of hormone. Cross-reactivity with other mammalian and nonmammalian prolactins and growth hormones was less than 20 and 0.3%, respectively. Cross-reactivity with equine growth hormone was less than 0.07%. Equine serum and pituitary extracts showed parallel dilution-response curves with equine prolactin. The percentage recovery of exogenous equine prolactin in serum was 89%. Preliminary analysis of several physiological samples (stallions, pregnant, and nonpregnant mares) yielded values from 0.6 to 12.0 ng/ml.  相似文献   

3.
During a long-term field study of a free-living population of California ground squirrels (Spermophilus beecheyi), blood samples were drawn at regular intervals from marked females via femoral venipuncture, and plasma progesterone (P) and prolactin (PRL) were measured by radioimmunoassay. Marked fluctuations with season and reproductive condition occurred in circulating levels of both hormones, with peak levels occurring during the spring breeding season. Two peaks in P concentrations were observed each spring, the first occurring during pregnancy, and the second during lactation. Peak PRL levels in females were also reached during the lactation interval, midway between the two P peaks. Analysis of repeated measures from individual females showed a marked decline in circulating P around the time of parturition. Juveniles had lower mean P levels than adults, and yearlings had lower peak levels during their initial reproductive episodes than older females did. The observed pattern of P secretion in S. beecheyi differs from that known for most mammals, but resembles those reported for other ground-dwelling sciurid rodents.  相似文献   

4.
Serum progesterone and testosterone concentrations were measured during different stages of oestrous and pregnancy in paired and unpaired female common voles (Microtus arvalis). Hormone concentrations were measured by ELISA, and cycle stages were determined by vaginal smears. Paired females usually had serum progesterone concentrations of more than 10 ng/ml in the oestrous cycle. A significant maximum was detected in prooestrous (51.70 +/- 7.84 ng/ml, mean +/- S.D.). Serum progesterone concentrations increased from about 40 ng/ml at the beginning of pregnancy to about 70 ng/ml on days 15 and 16. The last 2 days before parturition (days 19 and 20) were characterised by a decrease of progesterone concentrations to ca. 30 ng/ml. The maximum concentration of testosterone was found in prooestrous (1.58 +/- 0.31 ng/ml). Concentrations during pregnancy varied between 1.5 and 2.1 ng/ml. In two of three cases unpaired females exhibited progesterone values below 10 ng/ml, but with varying vaginal smear patterns. The combination of progesterone concentrations and vaginal smear patterns was found to be regular in only 23.8% of the cases. The most frequent cycle stage found was the oestrous (44.2%). Mean concentrations of progesterone (10.43 +/- 13.81 ng/ml) and testosterone (0.85 +/- 1.11 ng/ml) in unpaired females were significantly lower than in paired females, thereby denoting reproductive inactivity in the former. The study presents basic data for several parameters of the reproductive biology in the common vole and confirms the importance of combining hormone assays and vaginal smear monitoring in reproductive research.  相似文献   

5.
Lactating cows (64) were balanced by breed (54 Holstein and 10 Jersey) and assigned randomly to shade (S) or no shade (NS) management treatments for a continuous 20 wk trial beginning 5-5-76. A sub-sample of Holstein cows, five S and five NS, were fitted with jugular catheters 84 days after initiation of experiment. Thyrotropin Releasing Hormone (TRH; 100 mug) was administered intravenously at 1200 h to evaluate prolactin responses. Two days later each cow received intravenously 200 IU of ACTH at 1100 h to compare acute corticoid responses to ACTH. Mean prolactin response to TRH was greater for NS cows (291 vs 169 ng/ml; P < .01) as was peak plasma concentrations at 20 min (467 vs 267 ng/ml; P < .01). Mean corticoid response to ACTH injection was less for NS cows (52 vs 70 ng/ml; P < .10). Corticoid concentrations of plasma in both treatments had declined 65% by 7 h postinjection. These endocrine differences may be associated with thermoregulation and/or metabolic adjustments of cows exposed to different environmental systems of management during a seasonal period of thermal stress.  相似文献   

6.
A heterologous radioimmunoassay system developed for the rabbit and suitable for a wide range of mammalian species has been shown to measure prolactin in the plasma of the blue fox. Evaluation of prolactin levels throughout the year showed the concentrations displayed a circannual rhythm with the highest values occurring in May and June. Prolactin concentrations remained low (approximately 2.5 ng/ml plasma) from July until April with no consistent changes found around oestrus (March-April). In 8 pregnant females, the prolactin increase in late April and May coincided with the last part of gestation and lactation: concentrations (mean +/- s.e.m.) increased to 6.3 +/- 0.6 ng/ml at mid-gestation, 9.7 +/- 2.1 ng/ml at the end of gestation and 26.7 +/- 5.0 ng/ml during lactation. In 10 non-pregnant animals, the mean +/- s.e.m. values were 7.2 +/- 1.2 ng/ml in April, 8.8 +/- 2.2 ng/ml in May and 9.8 +/- 1.3 ng/ml in June. The prolactin profile in 4 ovariectomized females was similar to that observed in non-pregnant animals, but the plasma values tended to be lower during the reproductive season (April-June). In intact females, the only large LH peak (average 28 ng/ml) was observed around oestrus. During pro-oestrus, baseline LH levels were interrupted by elevations of 3.1-10.4 ng/ml. During the rest of the year, basal levels were less than 3 ng/ml. In ovariectomized females, LH concentrations increased within 2 days of ovariectomy and remained high (35-55 ng/ml) at all times of year.  相似文献   

7.
The effects of ovine prolactin (oPRL) and striped bass prolactin (sbPRL; Morone saxatilis) on plasma osmolality, electrolyte balance, and gill Na(+),K(+)-ATPase activity were investigated in hypophysectomized (Hx), freshwater (FW)-acclimated, hybrid striped bass (M. saxatilisxMorone chrysops). They were kept in dilute (isoosmotic) seawater for about 10 days after surgery. Seven days after transfer to FW, Hx fish had lower plasma osmolality and lower levels of Na(+), Cl(-), and Ca(2+) than sham-operated and intact fish. Fish were injected four times with oPRL (1, 5, or 20 microg/g body mass), sbPRL (10 or 100 ng/g), or hormone vehicle (0.9% NaCl) at 48-h intervals (days 0, 2, 4, and 6) in FW and then sampled for blood plasma 24 h after the fourth injection (day 7). In Hx fish, oPRL (5 and 20 microg/g) and sbPRL (10 and 100 ng/g) were effective in maintaining plasma osmolality and levels of Na(+), Cl(-), and Ca(2+) above values seen in saline-injected controls. Hypophysectomy did not affect branchial Na(+),K(+)-ATPase activity, but enzyme activity was significantly reduced in Hx fish receiving oPRL (20 mug/g) or sbPRL (10 or 100 ng/g). These results indicate that PRL acts to maintain plasma osmotic and ionic balance in FW-adapted hybrid striped bass, and that this may involve downregulation of branchial Na(+),K(+)-ATPase activity.  相似文献   

8.
A highly sensitive radioreceptor assay (RRA) for human prolactin (hPRL) based on membrane preparations obtained from chemically induced rat mammary tumour is described. The binding of 125I-labelled, highly purified pituitary human prolactin was specific for lactogenic hormones and depending on time, temperature, and concentration of receptor protein. Optimal specific receptor binding (18-20%) was obtained by incubation at 21 degrees C for 18 h. The prolactin receptor was shown to have a single "class" of binding sites with an affinity constant (Ka) of 6.0 X 10(10) mol-1. The binding capacity was 8-33 fmol/mg membrane protein. The sensitivity of the radioreceptor assay was 0.5 ng/ml ovine prolactin (NIH-PS-10) or 0.84 ng/ml human prolactin (NIH-VLS-4). The receptor binding activity of various purified prolactin preparations from different species was comparable to the biological hormone activities, indicating that this in vitro assay system measures values which are biologically relevant.  相似文献   

9.
Energy needs are increased during pregnancy and lactation. These increased energy needs may be met through partitioning of nutrients for energy utilization which is under hormonal control. The objective of the present studies was to determine if changes in plasma leptin occurred during pregnancy and lactation and if the changes were related to prolactin. Plasma leptin and prolactin were measured longitudinally in 9 women through pregnancy and lactation. In a second study, leptin and prolactin were measured 4 days and 28 days postpartum in 21 lactating women. Mean plasma leptin during the three trimesters of pregnancy was significantly higher (29.3+/-2.8 ng/ml) when compared to mean leptin during the three time periods of lactation (19.3+/-3.2 ng/ml) and control groups (9.8+/-1.4 ng/ml). Plasma leptin was elevated early in pregnancy and remained elevated throughout pregnancy. In the second study, the mean plasma leptin in the lactating women was significantly higher 4 days postpartum (17.3+/-3.7 ng/ml) and 28 days postpartum (19.2+/-3.9 ng/ml) when compared to controls (11.6+/-1.2 ng/ml). Prolactin in the control subjects (24+/-4 ng/ml) was significantly lower than in the pregnant (202+/-16 ng/ml) and lactating (108+/-26 ng/ml) groups. Similar observations were made in the second study (controls 20+/-2 ng/ml; lactation 28 days 159+/-21 ng/ml). Leptin during lactation was lower than in pregnancy but higher than control subjects. Regression analysis suggested that BMI and prolactin can be used as predictors of leptin in pregnancy and lactation. The increase in leptin and prolactin early in pregnancy suggests an association between the two hormones. Results of the present studies and research done by other investigators presents a strong role for leptin during pregnancy and lactation. Leptin is regulated by factors other than adiposity especially in reproductive women leading to our hypothesis that there are leptin and prolactin mediated effects on substrates used for energy utilization during pregnancy and lactation.  相似文献   

10.
In the present study, the pulsatile serum profiles of prolactin, LH and testosterone were investigated in eight clinically healthy fertile male beagles of one to six years of age. Serum hormone concentrations were determined in blood samples collected at 15 min intervals over a period of 6 h before (control) and six days before the end of a four weeks treatment with the dopamine agonist cabergoline (5 microg kg(-1) bodyweight/day). In addition, the effect of cabergoline administration was investigated on thyrotropin-releasing hormone (TRH)-induced changes in the serum concentrations of these hormones. In all eight dogs, the serum prolactin concentrations (mean 3.0 +/- 0.3 ng ml(-1)) were on a relatively constant level not showing any pulsatility, while the secretion patterns of LH and testosterone were characterised by several hormone pulses. Cabergoline administration caused a minor but significant reduction of the mean prolactin concentration (2.9 +/- 0.2 ng ml(-1), p < 0.05) and did not affect the secretion of LH (mean 4.6 +/- 1.3 ng ml(-1) versus 4.4 +/- 1.7 ng ml(-1)) or testosterone (2.5 +/- 0.9 ng ml(-1) versus 2.4 +/- 1.2 ng ml(-1)). Under control conditions, a significant prolactin release was induced by intravenous TRH administration (before TRH: 3.8 +/- 0.9 ng ml(-1), 20 min after TRH: 9.1 +/- 5.9 ng ml(-1)) demonstrating the role of TRH as potent prolactin releasing factor. This prolactin increase was almost completely suppressed under cabergoline medication (before TRH: 3.0 +/- 0.2 ng ml(-1), 20 min after TRH: 3.3 +/- 0.5 ng ml(-1)). The concentrations of LH and testosterone were not affected by TRH administration. The results of these studies suggest that dopamine agonists mainly affect suprabasal secretion of prolactin in the dog.  相似文献   

11.
Rat mammary tumors contain a unique class of cryptic cell-surface prolactin receptors that can be unmasked by depleting the cells of energy. These cryptic receptors, which are found in mammary tumors and nonlactating normal mammary cells but not in differentiated mammary tissue, are continuously inserted and rapidly removed from the cell surface. In this report we demonstrate that prolactin regulates the level of cryptic receptors. Treatment of primary cultures of rat mammary tumor cells with prolactin at concentrations between 0.1 and 0.5 ng/ml caused cryptic receptor levels to increase within 24 h, and this increase was maintained for up to 6 days. At prolactin concentrations of 10-50 ng/ml, receptor levels were the same as in cells incubated without hormone, while a decrease in the steady-state level of cryptic receptors was induced within 24 h by 100-500 ng prolactin/ml. Concentrations of 1,000-5,000 ng prolactin/ml caused a rapid, dose-dependent down regulation of cryptic receptor sites. Down regulation at 5,000 ng prolactin/ml was (1) complete (84 +/- 5% reduction) in 1 h; (2) specific for lactogenic hormones; (3) completely reversed within 10 h after prolactin removal; (4) energy dependent; and (5) not blocked by the cytoskeleton active agents cytochalasin B and colchicine or by NH4Cl, which inhibits hormone degradation. We conclude that rat mammary tumor cells have the capacity to auto-regulate cryptic prolactin receptors, a property that supports our notion that such receptors play a role in regulating prolactin responsiveness. The observed pattern of cryptic receptor autoregulation in response to prolactin concentration and time of exposure suggests that a pool of cryptic sites provides these cells with the capacity to respond to prolactin concentrations from pg to microgram/ml, a range well beyond the Kd for the receptor itself. Since prolactin receptors in mammary tumors are not down regulated unless prolactin concentrations are well beyond the saturation point, these cells may have a selective growth advantage over cells in normal mammary tissue.  相似文献   

12.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

13.
Plasma prolactin concentrations were determined by radioimmunoassay during oestrous cycles and around the time of oestrus in different types of primitive gilts: Vietnamese, Zlotnicka and wild-boar X domestic pig hybrids. The animals were bled without stress from an indwelling arterial catheter. The following results were obtained: (1) in all gilts the main prolactin peak was observed at Day 15 or 16 of the oestrous cycle; (2) Vietnamese and hybrid gilts showed a second smaller prolactin surge after (Day 2) or before (Day 17) oestrus; (3) base levels of prolactin during the oestrous cycle were 14.8 +/- 0.93 ng/ml (Vietnamese gilts), 13.2 +/- 1.05 ng/ml (Zlotnicka gilts) and 15.6 +/- 2.01 ng/ml (hybrid gilts). The 15-16-day prolactin peaks reached maximum values of 36.4, 43.4 and 56.5 ng/ml respectively.  相似文献   

14.
A heterologous double-antibody radioimmunoassay has been validated for prolactin in plasma and pituitary preparations of T. vulpecula. Serial dilutions of crude pituitary homogenates and plasmas from several marsupials and purified prolactin from the tammar, Macropus eugenii, showed parallel dose response curves. In both male and female possums plasma prolactin concentrations increased in response to a single intravenous injection of thyrotrophin releasing hormone. Plasma prolactin concentrations were measured in six lactating females (June-November) and in four non-lactating females (July-October). In the following year prolactin levels were also measured in 11 possums with young less than 50 days old and in 24 possums with young aged between 100 and 145 days. In early lactation prolactin concentrations were low (less than 8 ng/ml) but increased to high levels (greater than 30 ng/ml) by 120 days and remained high until about 160 days of lactation. Thereafter concentrations declined although the young continued to take milk from the mother for a further 30-50 days. The changes in plasma prolactin concentrations throughout lactation are very similar to those described for the tammar, and this unusual pattern appears to be common to marsupials. Non-lactating possums showed no consistent changes in plasma prolactin concentrations between July and October.  相似文献   

15.
Concentrations of prolactin were assayed from human cerebrospinal fluid (CSF). Samples were taken from lumbar CSF space (n=105 neurological patients) and from lateral ventricles (n=31 neurosurgical patients). Ventricular CSF samples were taken from operatively treated subarachnoidal hemorrhage (SAH) patients during the monitoring of intraventricular pressure. More voluminous and frequent sampling was obtained from six patients undergoing diagnostic pneumoencephalography (PEG) procedure. Prolactin concentrations in lumbar CSF ranged between undetectable and 2.8 ng/ml with a mean value of 0.78±0.54 (SD) ng/ml. Some fluctuation was seen in the fractionated samples taken at PEG, but no definitive gradient was noticed. Ventricular CSF concentrations of prolactin (n=18) were 0.85±0.67 (SD) ng/ml at operation (range : undetectable ? 2.5 ng/ml). Somewhat lower values were recorded in the 3-day postoperative period, prolactin mean concentrations being 0.3 ? 0.6 ng/ml. The CSF prolactin concentrations in the lateral ventricles and lumbar sac are practically identical with no concentration gradient between these compartments.  相似文献   

16.
A single injection of ergocryptine (0.5 mg/kg liveweight) given to ewes 0.5-20 days prepartum or two injections (0.5 mg/kg liveweight per injection) given c. 30 and 10 days prepartum reduced concentrations of plasma prolactin to negligible (less than 5 ng/ml) values for 4 weeks after parturition, but did not affect concentrations of growth hormone and placental lactogen. Milking of treated ewes had no effect on concentrations of plasma prolactin during the first 4 weeks of lactation, but concentrations of growth hormone were increased during the 10-20 min period after milking. The half-life of prolactin in plasma was estimated as 21 min. In spite of the dramatic effect of ergocryptine on plasma prolactin all treated ewes secreted copious quantities of milk of normal composition. Mean daily yields of ewes treated with ergocryptine were not significantly different (P greater than 0.05) from those of untreated control ewes, but the mean +/- s.e.m. of total milk production over the first 3 weeks of lactation for ergocryptine-treated ewes was significantly lower (P less than 0.05) than that of control ewes (9.5 +/- 1.11 v. 14.1 +/- 1.20 kg milk). The results suggest that prolactin is not an essential component of the lactogenic and galactopoietic complexes of hormones in the ewe.  相似文献   

17.
A homologous radioimmunoassay was used for measurement of porcine prolactin in blood plasma collected from sows during the periparturient period. The assay was able to detect prolactin over a range of 0.5 to 7.0 ng/assay tube. There was no significant cross reaction with growth hormone, luteinizing hormone, or follicle stimulating hormone at amounts up to 105 ng/assay tube while porcine ACTH gave 30% binding at 104 ng. Prolactin was not detected in plamsa from a hypophysectomized pig or 2 ergocryptine-treated sows when 100 μ l plasma were assayed. Prolactin concentration in plasma was then measured in 14 periparturient sows within a period extending from 7 days before farrowing to 7 days after farrowing. Samples were collected at 15 min intervals between 1330 and 1630 h each day. However, prolactin assays were done only on the even-numbered samples (30 min interval). Plasma prolactin concentrations (ng/ml, X ± SEM) were 23.7 ± 2.0 on days ?7 to ?5 prepartum, began to rise by day ?3 prepartum (42.5 ± 5.9), and peaked at 127.5 ± 17.6 on day 1 prepartum. By day 3 postpartum, prolactin concentrations in plasma had decreased to 80.5 ± 12.6 and further declined to 51.6 ± 4.6 on day 7 postpartum. The mean prolactin concentration in plasma for all pigs on days ?1 to +2 was 116.8 ± 13.8. This mean concentration for days ?1 to +2 was different (P < 0.025) from the mean prolactin concentration for the period both prior and subsequent to these days (?8 to ?2 and +3 to +8 days).  相似文献   

18.
No seasonal variation in any of the hormones measured was apparent in males or females. Testosterone levels in males increased around puberty (10-11 years) and remained significantly higher in adult than prepubertal males. This was not accompanied by any significant change in levels of LH, FSH or prolactin. In non-pregnant females there was no apparent difference in levels of LH, FSH or prolactin with age. There was a significant increase in progesterone around puberty (12 years) but there was considerable overlap in values between prepubertal and adult females. During pregnancy, progesterone levels were significantly higher than in non-pregnant females with maximum levels occurring at mid-pregnancy (9-12 months). However, there was considerable overlap in values between non-pregnancy and pregnancy. Concentrations of LH and FSH decreased significantly during mid-pregnancy while prolactin levels increased dramatically during pregnancy; after 7 months of gestation until term levels were always at least 8 ng/ml greater than in any non-pregnant female. It is suggested that this consistent increase in plasma/serum levels of prolactin can be used to diagnose pregnancy in the elephant.  相似文献   

19.
The luteotropic roles of prolactin and testosterone (or estradiol formed in luteal tissue) were investigated in hypophysectomized rats with homografts of granulosa lutein tissue. Using this approach, we could determine the effects of prolactin independently of estrogen, since granulosa lutein tissue does not produce estrogen de novo under these conditions. Luteinizing granulosa cells were expressed from the ovaries of immature pregnant mare's serum gonadotropin-primed Fischer 344 rats 6 h after injection of human chorionic gonadotropin. The cells were transplanted beneath the kidney capsule of adult, hypophysectomized, ovariectomized Fischer 344 recipients, which were treated with hormones daily for 12 or 14 days. In rats without treatment (no hormones, n = 3) and in rats treated with only testosterone (Silastic capsule, n = 6), only small amounts of luteal tissue (less than 5 mg/rat) were found and serum progesterone remained at low concentrations (10 ng or less) throughout the experiment. In contrast, in rats treated either with ovine prolactin (300 micrograms/day, n = 10) or with the combination of prolactin and testosterone (n = 12), serum progesterone increased to 43 ng/ml by Day 8. Beyond Day 8, serum progesterone continued to rise in rats treated with the combination of prolactin and testosterone to reach a mean value of 87 ng/ml by Day 14, and mean homograft wet weight was 49 mg/rat; in rats treated with only prolactin, serum progesterone decreased to 25 ng/ml by Day 14 and homograft wet weight was lower (24 mg/rat). Prolactin and testosterone together stimulated more homograft aromatase activity in vivo than did prolactin alone, but the in vitro production of progesterone was not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Highly sensitive and specific enzymeimmunoassays for oxytocin and prolactin determination in yak plasma using the biotin-streptavidin amplification system and the second antibody coating technique were validated and applied for determining their profiles during milk let down and cyclicity in yaks. Oxytocin EIA was conducted taking duplicate 200 microl of unknown plasma samples and standards per well. The lowest detection limit was 0.2 pg/well, which corresponded to 1pg/ml plasma. Prolactin EIA was carried out directly in 50 microl of yak plasma. The sensitivity of EIA procedure was 5 pg/well prolactin, which corresponded to 0.1 ng/ml plasma. Mean plasma prolactin concentrations although high at estrus were not statistically different (P > 0.05) from the hormone concentrations on other days. Mean plasma prolactin concentrations during non-breeding season were significantly higher (P < 0.001) than that recorded in breeding season. Oxytocin and prolactin profiles were also obtained in two yaks before, during and after milking. A sharp release of oxytocin and prolactin shortly after udder stimulation was observed. High levels of oxytocin and prolactin were maintained during milking, falling sharply thereafter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号