首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. In this report we describe the successful application of a novel microscope-based multiparameter laser scanning cytometer (LSC) to measure duration of different phases of cell cycle in HL-60 human leukaemic cell lines by the fraction of labelled mitoses (FLM) method. Exponentially growing cells were harvested after various time intervals following pulse-labelling with 5'-bromo-2'-deoxyuridine (BrdUrd), cytocentrifuged, fixed in ethanol, and then exposed to UV light to induce DNA strand breaks at the sites of incorporated BrdUrd. The 3'OH termini of the photolytically generated DNA strand breaks were labelled with BrdUTP in the reaction catalysed by exogenous terminal deoxynucleotidyl transferase (TdT), followed by FITC-labelled BrdUrd antibodies. DNA was counterstained with propidium iodide (PI). Due to differences in chromatin structure between the interphase and mitotic cells, the LSC identified the latter by virtue of their higher red (PI) fluorescence intensity values among all pixels over the measured cell. To confirm that the cells selected were indeed cells in mitosis, predominantly in metaphase, the recorded X-Y coordinates of selected cells were used to re-position the cell for their visual examination. From the time lapse analysis of percentage BrdUrd-labelled cells progressing through mitosis it was possible to calculate the duration of individual phases of the cell cycle. The duration of S (Ts) and G2+ M (TG2+M) was 8 and 3 h, respectively, and the minimal duration of G2 (TG2) was 2 h. The cell cycle time (Tc) estimated for the cohort of the most rapidly progressing cells was 13 h. The ability to automatically and rapidly discriminate mitotic cells combined with the possibility of their subsequent identification by image analysis makes LSC the instrument of choice for the FLM analysis.  相似文献   

2.
We examined the effects of separation and freezing on fish leukocyte and erythrocyte morphology by light microscopy and on DNA content as measured by flow cytometry (FCM). Leukocytes and erythrocytes of largemouth bass Micropterus salmoides were isolated by density gradient centrifugation of whole blood, and frozen in liquid nitrogen in a buffer containing DMSO as a cryopreservative. The coefficient of variation (CV) of the G0/G1 peak of the cells was used to assess variation in nuclear DNA content within cell populations before and after separation and freezing treatments. In erythrocytes, the CV did not change significantly (P>0.05) when nuclei were isolated and stained without freezing or when erythrocytes were frozen prior to nuclear isolation and staining. In leukocytes, freezing and thawing prior to isolation and staining of nuclei significantly increased the CV (P<0.05), and produced hyperdiploid shoulders of the G0/G1 peak. However, the CV of leukocyte nuclei that were isolated and stained prior to freezing and the CV of non-frozen leukocyte nuclei did not differ (P>0.05). Microscopy showed that the freezing protocol had little effect on erythrocyte morphology, but caused irregular swelling in leukocytes. Freezing intact leukocytes also significantly (p<0.05) altered the apparent distribution of cells among the phases of the cell cycle as measured by FCM. The distributions of leukocyte nuclei that were isolated and stained prior to freezing were not different to non-frozen leukocytes. DNA measurements of nucleated blood cells are widely used in physiological, genetic and toxicological studies. Our results suggest that whole blood and erythrocytes for use in such studies can be frozen whole using a simple protocol, but leukocyte nuclei must be isolated and stained before freezing to avoid serious artifacts.  相似文献   

3.
The second messenger cAMP is a key regulator of growth in many cells. Previous studies showed that cAMP could reverse the growth inhibition of indoleamines in the dinoflagellate Crypthecodinium cohnii Biecheler. In the present study, we measured the level of intracellular cAMP during the cell cycle of C. cohnii . cAMP peaked during the G1 phase and decreased to a minimum during S phase. Similarly, cAMP-dependent protein kinase activities peaked at both G1 and G2+M phases of the cell cycle, decreasing to a minimum at S phase. Addition of N6, O2'-dibutyryl (Bt2)-cAMP directly stimulated the growth of C. cohnii . Flow cytometric analysis of synchronized C. cohnii cells suggested that 1 mM cAMP shortened the cell cycle, probably at the exit from mitosis. The size of Bt2-cAMP treated cells at G1 was also larger than the control cells. The present study demonstrated a regulatory role of cAMP in the cell cycle progression in dinoflagellates.  相似文献   

4.
ABSTRACT. We developed a method to study the DNA synthetic cycles of Entamoeba histolytica and Entamoeba invadens by flow cytometry (FCM) based on a preparative procedure to reduce both high levels of natural fluorescence and non-specific adsorption of fluorochromes. We modeled G1, S, and G2 phases as a series of overlapping Gaussian curves. Both E. histolytica and E. invadens displayed G1, S, and G2 proportions that are consistent with eukaryotic cell populations in exponential or stationary growth phase. Exponential phase E. histolytica populations contained a hypodiploid subset with a mass of about 20% less than the diploid value which we estimate by FCM to be 24 × 10-14 g DNA/cell. Exponential phase E. invadens populations contained a hypodiploid subset with a mass of about 6% less than the diploid value which we estimate by FCM to be 30 × 10-14 g DNA/cell.  相似文献   

5.
Abstract. When the mouse mammary adenocarcinoma 755 (Ca-755) reaches the plateau phase of growth, non-cycling cells with a G2-DNA content can be observed. They may belong to the diploid cell cycle but they could also be blocked in G0 or G1 of a tetraploid cycle. This hypothesis was tested in three ways: (1) non-cycling G2 nuclei were stained with a combination of Feulgen and naphthol yellow which revealed two populations, one with a low protein content and the other with a high protein content– the latter may represent nuclei ready to begin a new phase of DNA synthesis; (2) Feulgen staining and autoradiography were performed after tritiated thymidine had been administered to mice continuously: this showed that there were cells synthesizing DNA with a DNA index above 2; and (3) cells having 80 chromosomes, corresponding to the tetraploid cycle, were found almost exclusively in the plateau phase tumours.
On the other hand, the use of texture and DNA parameters of the Feulgen stained nuclei showed that they were concentrated in a diploid cycle for tumours in the exponential phase of growth and were divided between a diploid and tetraploid cycle for 'plateau' cells. Neither the cause for, nor the role played by, polyploid cells is known.  相似文献   

6.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

7.
Abstract. Differentiation of mammalian cells is accompanied by reduced rates of proliferation and an exit from the cell cycle. Human leukemic cells HL60 present a widely used model of neoplastic cell differentiation, and acquire the monocytic phenotype when exposed to analogs of vitamin D3 (VD3). The maturation process is accompanied by two blocks in the cell cycle: an arrest in the G1/G0 phase, and a recently described G2+ M block. In this study we have analyzed the traverse of the cell cycle phases of the well-differentiating HL60-G cells exposed to one of ten analogs of VD3, and compared the cell cycle effects of each compound with its potency as a differentiation-inducing agent. We found that in general there was a good correlation between the effects of these compounds on the cell cycle and on differentiation, but the best cell cycle predictor of differentiation potency was the extent of accumulation of the cells in the G2 compartment. All analogs induced a marked decrease in the mitotic index, and polynucleation of HL60 cells was produced, especially by compounds which were effective as inducers of differentiation. Time course studies showed that induction of differentiation was accompanied by a transient increase of the proportion of cells in the G2+ M compartment, but preceded the G1 to S, and the G2 compartment blocks. These studies indicate that complex changes in the cell cycle traverse accompany, but do not precede, the acquisition of the monocytic phenotype by HL60 cells.  相似文献   

8.
Abstract. Cis-dichloro-bis (isopropylamine) trans-dihydroxy platinum (IV) (CHIP) is a second generation platinum coordination complex now in Phase II clinical trials. In vitro studies with Chinese Hamster Ovary cell cultures show that CHIP is a phase-sensitive drug, being most cytotoxic to cells in early G1 phase and least toxic to late S and G1 phase cells. the dose-modifying factor between the drug sensitivity of cells treated in G1 and in late S phase is 1.6. These findings and their clinical significance are discussed with respect to the phase sensitivity of other cytotoxic agents.  相似文献   

9.
Addition of abscisic acid (ABA) at the torpedo-shaped stage of development and slow dehydration are two parameters necessary to produce completely desiccation-tolerant carrot ( Daucus carota L.) embryoids. The mode of action of these parameters is still largely unidentified. Employing flow cytometry we investigated their effect on DNA replication and cell cycle activity of the developing embryoids. DNA replication was determined as percentage of 4C nuclei. Addition of ABA did not alter DNA replication and cell cycle during embryoid development in vitro, in spite of the putative quiescent state of the torpedo-shaped embryoids. In contrast, during slow drying the nuclei were preferentially arrested in the presynthesis G0/G1-phase and the amount of G2 nuclei decreased. Dry zygotic carrot embryos do not contain any G2 nuclei and are completely desiccation tolerant. The decline of G2 nuclei in dry somatic embryoids seems to coincide with the increase in desiccation tolerance, which is incomplete compared to zygotic embryos. Our results suggest that in order to withstand anhydrobiosis, DNA replication may be controlled during the embryoid developmental program and slow dehydration, but not by the plant growth regulator ABA.  相似文献   

10.
Abstract. By flow cytometric dual parameter analysis of proliferating cell nuclear antigen (PCNA) and the Ki-67 antigen a detailed cell cycle analysis can be performed. In this study the co-ordinated expression of these two growth-related antigens was investigated in human haematopoietic cells at entrance into the cell cycle as well as at exit from the cycle. In mitogen-stimulated peripheral blood lymphocytes entering the first cell cycle, the Ki-67 antigen was found to be expressed in S phase cells and not in G1 cells. Thus, the Ki-67 antigen expression in PCNA-positive S phase cells differed between continuously cycling cells and cells entering the cell cycle. Based on this difference, it was possible to visualize and evaluate the recruitment of cells into the first cell cycle from a resting stage. This new cell cycle parameter can give additional information concerning tumour growth. The Ki-67 antigen was also studied during different stages of G1 and was found to be expressed at high levels in early G1 cells compared with other parts of G1.  相似文献   

11.
Abstract: Rat glioma mouse neuroblastoma hybrid neurotumor cells (NG108-15), synchronized by amino acid deprivation, showed a cell-cycle-dependent peak of activity of a ganglioside N-acetylgalactosaminyl transferase 14-24 h following release from the cell cycle block (S/G2 phase). Maximal expression of two typical lysosomal hydrolases, N-acetyl-β-hexosaminidase and β-galactosidase, occurred between 18 and 21 h following release (S phase), declining to G1 phase levels during the peak of N-acetylgalactosamine (GalNAc) transferase activity. In addition, glycosyltransferase activity in G2 phase cells showed an increase in apparent Vmax (suggesting the presence of more enzyme/mg of cell protein) and apparent binding affinity for uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) (32 versus 14 M) when compared to transferase activity in the G1 phase. However, the opioid peptide enkephalin [D-Ala2, o-Leu5], which inhibits ganglioside GalNAc transferase activity in unsynchronized NG108-15 cultures, was much more inhibitory in whole cells 8 h after release from the cell cycle block (G1 phase) than in cells 20 h after release (G, phase), with 50% inhibition occurring at 2 ± 10-9M and 2 ± 10-7M, respectively. These results suggest that the GalNAc transferase activity is regulated in more than one way during the cell cycle, since both Vmax and Km changes are observed, and that the cyclic AMP-dependent mechanism by which opiates reduce transferase activity is receptor mediated and cell cycle dependent.  相似文献   

12.
13.
Abstract. The physiologically active form of vitamin D3, 1,25-dihydroxy-vitamin D3, (1,25(OH)2, D3), induces differentiation of several types of myeloid leukaemia cells. The acquisition of monocyte-like phenotype is accompanied by slower progression through the cell cycle, and G1, block has been reported to be the basis of this effect. It is shown here that human promyelocytic leukaemia HL60 cells treated with analogues of vitamin D3, which are potent inducers of monocytic differentiation, have an additional cell cycle block. Exposure to 10-7m 1,25(OH)2, D3, or 1,25-(OH)2,-16-ene-D3 resulted in monocytic differentiation and the expected G1, block evident at approximately 48 h in a rapidly differentiating variant of HL60 cells (HL60-G), and at 96 h in the more slowly differentiating HL60-240 cells. In addition, a G2,+M block was noted at approximately 72 h in HL60-G and HL60-240 cells. Exposure to vitamin D3, analogues also markedly increased the number of dikaryons, suggesting that cytokinesis was impaired more than karyokinesis. Treatment with a third analogue 25-hydroxy-16,23-diene-D3, produced little differentiation and had minimal effects on the cell cycle parameters. These findings indicate that vitamin D3, analogues regulate cell proliferation by control of the transition of G1, and G2,+M phases, reminiscent of the cdc2/CDK2 type of cell cycle control.  相似文献   

14.
Abstract. In order to characterize the growth pattern of the human promyelocytic leukaemia cell line HL60, its kinetic parameters were studied. The doubling time was calculated from serial cell counts, the duration of the various cell cycle phases from the analysis of the labelled mitoses curve, and quiescent population from continuous labelling experiments. Proliferation in culture was exponential up to a saturation density of about 3.0 × 106 cells/ml, with a doubling time of 34.0 hr. The cell cycle duration was 24.3 ± 4.1 hr (SD), and that of the cell cycle phases was: G1, 3.8 ± 2.2 hr; S, 15.1 ± 3 hr; and G2, 5.4 ± 1.2 hr. The growth fraction was 0.85, and cell loss was restricted to the quiescent cells. The HL60 cell line, with fully characterized kinetics, provides a useful tool for the in vitro study of substances which may affect human leukaemic myelopoietic proliferation.  相似文献   

15.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

16.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

17.
Cytophotometric determination of single-cell DNA after repeated 3H-thymidine labelling of the JB-1 ascites tumour in the plateau phase of growth showed a massive accumulation of unlabelled cells with both G1 and G2 content. Autoradiography combined with cytophotometry or colcemid block demonstrated that some of these unlabelled cells were rapidly triggered into the cell cycle when plateau tumours were transferred to new hosts. This indicated that tumour cells may be held up in non-cycling stages corresponding to both the G1 and the G2 phase of the cell cycle.  相似文献   

18.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

19.
Mitogen‐activated‐protein (MAP) kinases are components of signal transduction pathways which respond to a variety of stimuli in different organisms. In quiescent mammalian cells, the reactivation of cell division induced by different mitogenic signals is mediated by the rapid phosphorylation and activation of MAP kinases. We have investigated whether a similar situation occurs in plants, arresting tobacco ( Nicotiana tabacum L.) cells in the G1 phase of the cell cycle by phosphate starvation, and then inducing them to re‐enter the cell cycle by refeeding with phosphate. The transient activation of a kinase activity with the characteristics of a MAP kinase was observed during the first hour after refeeding, when the cells were still in G1. Using myelin basic protein (MBP) as substrate, an increase in this phosphorylating activity, with a molecular mass of approximately 45 kDa, was detected in cell extracts between 35 and 55 min after induction, in in‐gel phosphorylation assays and after immunoprecipitation with anti‐MAP kinase antibodies. The specificity of the antibodies against recombinant tobacco MAP kinases suggested that the MAP kinase p45ntf4 was responsible for the observed activity. These data provide experimental evidence for the activation in vivo of a plant MAP kinase, possibly mediating the reactivation of cell division in G1‐arrested cells.  相似文献   

20.
Ascorbic acid effect on the onset of cell proliferation in pea root   总被引:5,自引:0,他引:5  
The ability of ascorbic acid to induce cell proliferation of non-cycling cells was investigated in quiescent embryo root of Pisum sativum L. cv. Lincoln, as well as in the active plantlet root meristem, where a minor portion of the cells is non-proliferating. Quiescent embryo cells speeded up the G0–G1 transition during germination in the presence of ascorbic acid. In addition, proliferating cells present in the root tip of 3-day-old plantlets, arrested at the G1/S boundary by hydroxyurea, resumed the cycle earlier than the control, when treated with ascorbic acid. In contrast, ascorbic acid was unable to induce the proliferation of non-cycling cells present in the active meristem. Therefore, these data suggest that the ability of ascorbic acid lo induce cell proliferation depends on the physiological status of the cell. In particular the data indicate that ascorbic acid is involved in cell proliferation as a factor necessary to enable already competent cells to progress through the cell cycle phases, but not as a factor able to induce non-competent cells to overcome proliferation arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号