首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC(50) value of ~30 μm for cCMP compared with 1 μm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ~0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes.  相似文献   

2.
Integrated allosteric model of voltage gating of HCN channels   总被引:8,自引:0,他引:8  
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, activation deviating from fixed power of an exponential, removal of activation "delay" by preconditioning hyperpolarization. Previous work on native channels has indicated that the shifting action of cAMP on the open probability (Po) curve can be accounted for by an allosteric model, whereby cAMP binds more favorably to open than closed channels. We therefore asked whether not only cAMP-dependent, but also voltage-dependent gating of hyperpolarization-activated channels could be explained by an allosteric model. We hypothesized that HCN channels are tetramers and that each subunit comprises a voltage sensor moving between "reluctant" and "willing" states, whereas voltage sensors are independently gated by voltage, channel closed/open transitions occur allosterically. These hypotheses led to a multistate scheme comprising five open and five closed channel states. We estimated model rate constants by fitting first activation delay curves and single exponential time constant curves, and then individual activation/deactivation traces. By simply using different sets of rate constants, the model accounts for qualitative and quantitative aspects of voltage gating of all three HCN isoforms investigated, and allows an interpretation of the different kinetic properties of different isoforms. For example, faster kinetics of HCN1 relative to HCN2/HCN4 are attributable to higher HCN1 voltage sensors' rates and looser voltage-independent interactions between subunits in closed/open transitions. It also accounts for experimental evidence that reduction of sensors' positive charge leads to negative voltage shifts of Po curve, with little change of curve slope. HCN voltage gating thus involves two processes: voltage sensor gating and allosteric opening/closing.  相似文献   

3.
The hyperpolarization-activated cyclic nucleotide-gated (HCN) family of "pacemaker" channels includes 4 isoforms, the kinetics and cAMP-induced modulation of which differ quantitatively. Because HCN isoforms are highly homologous in the central region, but diverge more substantially in the N and C termini, we asked whether these latter regions could contribute to the determination of channel properties. To this aim, we analyzed activation/deactivation kinetics and the response to cAMP of heterologously expressed isoforms mHCN1 and rbHCN4 and verified that mHCN1 has much faster kinetics and lower cAMP sensitivity than rbHCN4. We then constructed rbHCN4 chimeras by replacing either the N or the C terminus, or both, with the analogous domains from mHCN1. We found that: 1) replacement of the N terminus (chimera N1-4) did not substantially modify either the kinetics or cAMP dependence of wild-type channels; 2) replacement of the C terminus, on the contrary, resulted in a chimeric channel (4-C1), the kinetics of which were strongly accelerated compared with rbHCN4, and that was fully insensitive to cAMP; 3) replacement of both N and C termini led to the same results as replacement of the C terminus alone. These results indicate that the C terminus of rbHCN4 contributes to the regulation of voltage- and cAMP-dependent channel gating, possibly through interaction with other intracellular regions not belonging to the N terminus.  相似文献   

4.
5.
The pacemaker channels HCN2 and HCN4 have been identified in cardiac sino-atrial node cells. These channels differ considerably in several kinetic properties including the activation time constant (tau act), which is fast for HCN2 (144 ms at -140 mV) and slow for HCN4 (461 ms at -140 mV). Here, by analyzing HCN2/4 chimeras and mutants we identified single amino acid residues in transmembrane segments 1 and 2 and the connecting loop between S1 and S2 that are major determinants of this difference. Replacement of leucine 272 in S1 of HCN4 by the corresponding phenylalanine present in HCN2 decreased tau act of HCN4 to 149 ms. Conversely, activation of the fast channel HCN2 was decreased 3-fold upon the corresponding mutation of F221L in the S1 segment. Mutation of N291T and T293A in the linker between S1 and S2 of HCN4 shifted tau act to 275 ms. While residues 272, 291, and 293 of HCN4 affected the activation speed at basal conditions they had no obvious influence on the cAMP-dependent acceleration of activation kinetics. In contrast, mutation of I308M in S2 of HCN4 abolished the cAMP-dependent decrease in tau act. Surprisingly, this mutation also prevented the acceleration of channel activation observed after deletion of the C-terminal cAMP binding site. Taken together our results indicate that the speed of activation of the HCN4 channel is determined by structural elements present in the S1, S1-S2 linker, and the S2 segment.  相似文献   

6.
Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes.  相似文献   

7.
If, encoded by the hyperpolarization-activated cyclic nucleotide-modulated channel family (HCN1-4), contributes significantly to neuronal and cardiac pacing. Recently, we reported that the S3-S4 residue Glu-235 of HCN1 influences activation by acting as a surface charge. However, it is uncertain whether other residues of the external S3-S4 linker are also involved in gating. Furthermore, the secondary conformation of the linker is not known. Here we probed the structural and functional role of the HCN1 S3-S4 linker by introducing systematic mutations into the entire linker (defined as 229-237) and studying their effects. We found that the mutations K230A (-62.2 +/- 3.4 mV versus -72.2 +/- 1.7 mV of wild type (WT)), G231A (-64.4 +/- 1.3 mV), M232A (V(1/2) = -63.1 +/- 1.1 mV), and E235G (-65.4 +/- 1.5 mV) produced depolarizing activation shifts. Although E229A and M232A decelerated gating kinetics (<13- and 3-fold, respectively), K230A and G231A accelerated both activation and deactivation (< approximately 2-3-fold). D233A, S234A, V236A, and Y237A channels exhibited WT properties (p > 0.05). Shortening the linker (EVY235-237deltadeltadelta) caused depolarizing activation shift and slowed kinetics that could not be explained by removing the charge at position 235 alone. Secondary structural predictions by the modeling algorithms SSpro2 and PROF, along with refinements by our experimental data, suggest that part of the S3-S4 linker conforms a helical structure with the functionally important residues Met-232, Glu-235, and Gly-231 (|deltadeltaG|>1 kcal/mol) clustered on one side.  相似文献   

8.
Hyperpolarization-activated cAMP-regulated (HCN) channels play important physiological roles in both cardiovascular and central nervous systems. Among the four HCN isoforms, HCN2 and HCN4 show high expression levels in the human heart, with HCN4 being the major cardiac isoform. The previously published crystal structure of the mouse HCN2 (mHCN2) C-terminal fragment, including the C-linker and the cyclic-nucleotide binding domain (CNBD), has provided many insights into cAMP-dependent gating in HCN channels. However, structures of other mammalian HCN channel isoforms have been lacking. Here we used a combination of approaches including structural biology, biochemistry, and electrophysiology to study cAMP-dependent gating in HCN4 channel. First we solved the crystal structure of the C-terminal fragment of human HCN4 (hHCN4) channel at 2.4 Å. Overall we observed a high similarity between mHCN2 and hHCN4 crystal structures. Functional comparison between two isoforms revealed that compared with mHCN2, the hHCN4 protein exhibited marked different contributions to channel function, such as a ∼3-fold reduction in the response to cAMP. Guided by structural differences in the loop region between β4 and β5 strands, we identified residues that could partially account for the differences in response to cAMP between mHCN2 and hHCN4 proteins. Moreover, upon cAMP binding, the hHCN4 C-terminal protein exerts a much prolonged effect in channel deactivation that could have significant physiological contributions.  相似文献   

9.
10.
The positively charged S4 transmembrane segment of voltage-gated channels is thought to function as the voltage sensor by moving charge through the membrane electric field in response to depolarization. Here we studied S4 movements in the mammalian HCN pacemaker channels. Unlike most voltage-gated channel family members that are activated by depolarization, HCN channels are activated by hyperpolarization. We determined the reactivity of the charged sulfhydryl-modifying reagent, MTSET, with substituted cysteine (Cys) residues along the HCN1 S4 segment. Using an HCN1 channel engineered to be MTS resistant except for the chosen S4 Cys substitution, we determined the reactivity of 12 S4 residues to external or internal MTSET application in either the closed or open state of the channel. Cys substitutions in the NH2-terminal half of S4 only reacted with external MTSET; the rates of reactivity were rapid, regardless of whether the channel was open or closed. In contrast, Cys substitutions in the COOH-terminal half of S4 selectively reacted with internal MTSET when the channel was open. In the open state, the boundary between externally and internally accessible residues was remarkably narrow (approximately 3 residues). This suggests that S4 lies in a water-filled gating canal with a very narrow barrier between the external and internal solutions, similar to depolarization-gated channels. However, the pattern of reactivity is incompatible with either classical gating models, which postulate a large translational or rotational movement of S4 within a gating canal, or with a recent model in which S4 forms a peripheral voltage-sensing paddle (with S3b) that moves within the lipid bilayer (the KvAP model). Rather, we suggest that voltage sensing is due to a rearrangement in transmembrane segments surrounding S4, leading to a collapse of an internal gating canal upon channel closure that alters the shape of the membrane field around a relatively static S4 segment.  相似文献   

11.
We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).  相似文献   

12.
The hyperpolarization-activated cyclic nucleotide-modulated channel gene family (HCN1-4) encodes the membrane depolarizing current that underlies pacemaking. Although the topology of HCN resembles Kv channels, much less is known about their structure-function correlation. Previously, we identified several pore residues in the S5-P linker and P-loop that are externally accessible and/or influence HCN gating, and proposed an evolutionarily conserved pore-to-gate mechanism. Here we sought dynamic evidence by assessing the functional consequences of Cys-scanning substitutions in the unexplored P-S6 linker (residues 352–359), the HCN1-R background (that is, resistant to sulfhydryl-reactive agents). None of A352C, Q353C, A354C, P355C, V356C, S357C, M358C, or S359C produced functional currents; the loss-of-function of Q353C, A354C, S357C, and M358C could be rescued by the reducing agent dithiothreitol. Q353C, A354C, and S357C, but not M358C and HCN1-R, were sensitive to Cd2+ blockade (IC50 = 3–12 μM vs. >1 mM). External application of the positively charged covalent sulfhydryl modifier MTSET irreversibly reduced I −140mV of Q353C and A354C to 27.9 ± 3.4% and 58.2 ± 13.1% of the control, respectively, and caused significant steady-state activation shifts (∆V 1/2 = –21.1 ± 1.6 for Q353C and −10.0 ± 2.9 mV for A354C). Interestingly, MTSET reactivity was also state dependent. MTSET, however, affected neither S357C nor M358C, indicating site specificity. Collectively, we have identified novel P-S6 residues whose extracellular accessibility was sterically and state dependent and have provided the first functional evidence consistent with a dynamic HCN pore-to-gate model.  相似文献   

13.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels contribute to the spontaneous rhythmic activities in cardiac and neuronal cells. Recently, we reported that the S3-S4 linker of HCN1 channels influences activation, and that part of the linker is helical with the determinants G231, M232, and E235 clustered on one side. Here we explored the undefined role of the G(231)E(235)M(232) triplet by systematic substitutions. Replacing G231 or M232 next to the "neighboring" E235 in the S3-S4 helix with an anionic residue (i.e., G231E, M232E) rendered channels non-functional although they were localized on the membrane surface. Interestingly, this loss of function could be readily rescued either by introducing a countercharge at position 235 (G231E/E235R, M232E/E235R) or by interchanging residues 231 or 232 and 235 (G231E/E235G, M232E/E235M). We conclude that residues 231, 232, and 235 are in close spatial proximity to each other, and uniquely interact with one another to shape the phenotypes of HCN channels.  相似文献   

14.
15.
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is opened (Shin, K.S., B.S. Rothberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101). However, the ZD7288 molecule is larger than the Na(+) or K(+) ions that flow through the open channel. In the present study, we sought to resolve whether the voltage gate at the intracellular entrance to the pore for ZD7288 also can be a gate for permeant ions in HCN channels. Single residues in the putative pore-lining S6 region of an HCN channel (cloned from sea urchin; spHCN) were substituted with cysteines, and the mutants were probed with Cd(2+) applied to the intracellular side of the channel. One mutant, T464C, displayed rapid irreversible block when Cd(2+) was applied to opened channels, with an apparent blocking rate of approximately 3 x 10(5) M(-1)s(-1). The blocking rate was decreased for channels held at more depolarized voltages that close the channels, which is consistent with the Cd(2+) access to this residue being gated from the intracellular side of the channel. 464C channels could be recovered from Cd(2+) inhibition in the presence of a dithiol applied to the intracellular side. The rate of this recovery also was reduced when channels were held at depolarized voltages. Finally, Cd(2+) could be trapped inside channels that were composed of WT/464C tandem-linked subunits, which could otherwise recover spontaneously from Cd(2+) inhibition. Thus, Cd(2+) escape is also gated at the intracellular side of the channel. Together, these results are consistent with a voltage-controlled structure at the intracellular side of the spHCN channel that can gate the flow of cations through the pore.  相似文献   

16.
Hyperpolarization-activated cyclic nucleotide-sensitive nonselective cation (HCN) channels are activated by membrane hyperpolarization, in contrast to the vast majority of other voltage-gated channels that are activated by depolarization. The structural basis for this unique characteristic of HCN channels is unknown. Interactions between the S4-S5 linker and post-S6/C-linker region have been implicated previously in the gating mechanism of HCN channels. We therefore introduced pairs of cysteines into these regions within the sea urchin HCN channel and performed a Cd(2+)-bridging scan to resolve their spatial relationship. We show that high affinity metal bridges between the S4-S5 linker and post-S6/C-linker region can induce either a lock-open or lock-closed phenotype, depending on the position of the bridged cysteine pair. This suggests that interactions between these regions can occur in both the open and closed states, and that these regions move relative to each other during gating. Concatenated constructs reveal that interactions of the S4-S5 linker and post-S6/C-linker can occur between neighboring subunits. A structural model based on these interactions suggests a mechanism for HCN channel gating. We propose that during voltage-dependent activation the voltage sensors, together with the S4-S5 linkers, drive movement of the lower ends of the S5 helices around the central axis of the channel. This facilitates a movement of the pore-lining S6 helices, which results in opening of the channel. This mechanism may underlie the unique voltage dependence of HCN channel gating.  相似文献   

17.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore. Recently, the structure of the HCN2 COOH-terminal region was solved and shown to contain intersubunit interactions between C-linker regions. To explore the role of these intersubunit interactions in intact channels, we studied two salt bridges in the C-linker region: an intersubunit interaction between C-linkers of neighboring subunits, and an intrasubunit interaction between the C-linker and its CNBD. We show that breaking these salt bridges in both HCN2 and CNGA1 channels through mutation causes an increase in the favorability of channel opening. The wild-type behavior of both HCN2 and CNGA1 channels is rescued by switching the position of the positive and negative residues, thus restoring the salt bridges. These results suggest that the salt bridges seen in the HCN2 COOH-terminal crystal structure are also present in the intact HCN2 channel. Furthermore, the similar effects of the mutations on HCN2 and CNGA1 channels suggest that these salt bridge interactions are also present in the intact CNGA1 channel. As disrupting the interactions leads to channels with more favorable opening transitions, the salt bridges appear to stabilize a closed conformation in both the HCN2 and CNGA1 channels. These results suggest that the HCN2 COOH-terminal crystal structure contains the C-linker regions in the resting configuration even though the CNBD is ligand bound, and channel opening involves a rearrangement of the C-linkers and, thus, disruption of the salt bridges. Discovering that one portion of the COOH terminus, the CNBD, can be in the activated configuration while the other portion, the C-linker, is not activated has lead us to suggest a novel modular gating scheme for HCN and CNG channels.  相似文献   

18.
Anselmi C  Carloni P  Torre V 《Proteins》2007,66(1):136-146
The aim of the present work is to relate functional differences of voltage-gated K(+) (K(v)), hyperpolarization-activated cyclic nucleotide-gated (HCN), and cyclic nucleotide gated (CNG) channels to differences in their amino acid sequences. By means of combined bioinformatic sequence analyses and homology modelling, we suggest that: (1) CNG channels are less voltage-dependent than K(v) channels since the charge of their voltage sensor, the S4 helix, is lower than that of K(v) channels and because of the presence of a conserved proline in the S4-S5 linker, which is quite likely to uncouple S4 from S5 and S6. (2) In HCN channels, S4 features a higher net positive charge with respect to K(v) channels and an extensive network of hydrophobic residues, which is quite likely to provide a tight coupling among S4 and the neighboring helices. We suggest insights on the gating of HCN channels and the reasons why they open with membrane hyperpolarization and with a significantly longer time constant with respect to other channels.  相似文献   

19.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (tau approximately 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.  相似文献   

20.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2-4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V(½) in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号