首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins from extensor digitorum longus (EDL), plantaris (PLN), and soleus (SOL) muscles of adult, female rats were examined by high resolution two-dimensional gel electrophoresis up to 4 weeks following spinal cord transection. The electrophoretograms were analyzed by computer imaging and densitometry. Reproducible and significant changes in the relative concentrations of several proteins in each muscle type were detected. Whereas changes involving the largest number of proteins were observed in SOL, changes in EDL and PLN were also detected. In SOL, approximately 50% of the altered proteins increased in concentration and the remaining decreased: Actin and myosin light chains LCF-1 and LCF-2 were among those proteins whose concentrations increased, whereas myosin light chains LCS-1 and LCS-2 were among those proteins whose concentrations decreased. The present findings regarding the reversal in myosin light chain composition provide biochemical support for previously published data on changes in contractile properties of muscles following spinalization. In EDL, the relative concentration of only one protein was elevated in a time-dependent manner. The concentrations of two protein species in PLN were increased following cord transection. These findings provide new biochemical markers on the effects of spinal cord on gene expression in specific hindlimb skeletal muscles.  相似文献   

2.
Neonatalsciatic nerve crush results in a sustained reduction of the mass ofboth extensor digitorum longus (EDL) and soleus (SOL) musclesin the rat. Type IIB fibers are selectively lost from EDL. We haveinvestigated the effects of ciliary neurotrophic factor (CNTF) combinedwith neurotrophin (NT)-3 or NT-4 on muscle mass, as well as the number,cross-sectional area, and distribution of muscle fiber types and thenumber of motor neurons innervating EDL and SOL 3 mo after transientaxotomy 5 days after birth. Both NT treatments prevented theaxotomy-induced loss of muscle mass in both EDL and SOL and of totalnumber of muscle fibers in EDL but not in SOL. Although IIB fiber losswas not prevented, both NT treatments resulted in altered fiber typedistribution. Both NT combinations also reduced the loss of EDL motorneurons. These data suggest that a differential distribution of NTreceptors on either motor neurons or muscle fibers may lead todifferent levels of susceptibility to neonatal axotomy.

  相似文献   

3.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

4.
The purpose of the present study was to compare dexamethasone-induced glycogen increases in normal EDL and SOL muscles with that in free muscle grafts. Glycogen in mature EDL and SOL grafts in the rat equalled control concentrations irrespective of whether the graft was a nerve-intact (NI), nerve-crushed (NC), reimplanted, or cross-transplanted graft. The grafts also possessed the glycogen-regulatory mechanisms to respond to the glucocorticoid dexamethasone (DEX), which increases muscle glycogen. The increase in glycogen induced by DEX in the EDL and SOL grafts resembled that of the EDL and SOL muscles, respectively, whether the grafted muscle was originally an EDL or SOL. DEX induced an approximate twofold increase in glycogen concentration in control muscles and nerve-intact SOL grafts, and a smaller but significant increase in all other free grafts. Nerve crushing prior to grafting resulted in no significant change in muscle weight, glycogen concentration, or DEX-induced glycogen increase in these grafts. The data suggest that skeletal muscle grafts are qualitatively similar to normal muscles in terms of metabolic responsiveness to hormones. Leaving the nerve intact during grafting quantitatively enhances the graft's hormonal sensitivity but the technique of nerve crushing prior to grafting has no such effect.  相似文献   

5.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

6.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   

7.
Hyperammonemia is considered to be the main cause of decreased levels of the branched-chain amino acids (BCAA), valine, leucine, and isoleucine, in liver cirrhosis. In this study we investigated whether the decrease in BCAA is caused by the direct effect of ammonia on BCAA metabolism and the effect of ammonia on BCAA and protein metabolism in different types of skeletal muscle. M. soleus (SOL, slow-twitch, red muscle) and m. extensor digitorum longus (EDL, fast-twitch, white muscle) of white rat were isolated and incubated in a medium with or without 500 μM ammonia. We measured the exchange of amino acids between the muscle and the medium, amino acid concentrations in the muscle, release of branched-chain keto acids (BCKA), leucine oxidation, total and myofibrillar proteolysis, and protein synthesis. Hyperammonemia inhibited the BCAA release (81% in SOL and 60% in EDL vs. controls), increased the release of BCKA (133% in SOL and 161% in EDL vs. controls) and glutamine (138% in SOL and 145% in EDL vs. controls), and increased the leucine oxidation in EDL (174% of controls). Ammonia also induced a significant increase in glutamine concentration in skeletal muscle. The effect of ammonia on intracellular BCAA concentration, protein synthesis and on total and myofibrillar proteolysis was insignificant. The data indicates that hyperammonemia directly affects the BCAA metabolism in skeletal muscle which results in decreased levels of BCAA in the extracellular fluid. The effect is associated with activated synthesis of glutamine, increased BCAA oxidation, decreased release of BCAA, and enhanced release of BCKA. These metabolic changes are not directly associated with marked changes in protein turnover. The effect of ammonia is more pronounced in muscles with high content of white fibres.  相似文献   

8.
Studies were undertaken to compare the effects of exercise and food restriction on body weight (BW), muscle weight (MW), muscle fiber size, and proportion of muscle fiber types. 20 male Fischer 344 rats were randomly assigned to four equal groups: ad libitum-fed control (AC), ad libitum-fed exercise (AE), food restricted control (RC) and food restricted exercise (RE). From 6 weeks of age, RC and RE rats received 60% of the daily food intake of AC and AE rats, respectively. At 7 months of age, AE and RE rats began 40-50 min of daily treadmill exercise. Running speed increased from 1.2 to 1.6 miles/hour and the grade increased to 15% during the first 2 weeks of training. After 10 weeks of training, rats were weighed, sacrificed, and the soleus (SOL), plantaris (PLN) and extensor digitorum longus (EDL) muscles were removed at in situ rest length, weighed, and quick-frozen. Standard histochemical assays were performed, and muscle fiber cross-sectional area was determined planimetrically. Training had little effect on MW or BW, but food restriction greatly reduced BW. This resulted in greater MW/BW ratio in RC and RE than AC and AE rats, respectively. Exercise also increased SOL muscle fiber area in ad libitum-fed but not food restricted rats resulting in smaller fibers in SOL of RE than AE. No changes in percentage of SOL fiber types occurred with food restriction or exercise. In PLN, the percentage of fast-twitch oxidative fibers of AE and RE was greater than in AC and RC, but there was no effect of food restriction or exercise on fiber area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Changes in mitochondrial function with age vary between different muscle types, and mechanisms underlying this variation remain poorly defined. We examined whether the rate of mitochondrial protein turnover contributes to this variation. Using heavy label proteomics, we measured mitochondrial protein turnover and abundance in slow‐twitch soleus (SOL) and fast‐twitch extensor digitorum longus (EDL) from young and aged mice. We found that mitochondrial proteins were longer lived in EDL than SOL at both ages. Proteomic analyses revealed that age‐induced changes in protein abundance differed between EDL and SOL with the largest change being increased mitochondrial respiratory protein content in EDL. To determine how altered mitochondrial proteomics affect function, we measured respiratory capacity in permeabilized SOL and EDL. The increased mitochondrial protein content in aged EDL resulted in reduced complex I respiratory efficiency in addition to increased complex I‐derived H2O2 production. In contrast, SOL maintained mitochondrial quality, but demonstrated reduced respiratory capacity with age. Thus, the decline in mitochondrial quality with age in EDL was associated with slower protein turnover throughout life that may contribute to the greater decline in mitochondrial dysfunction in this muscle. Furthermore, mitochondrial‐targeted catalase protected respiratory function with age suggesting a causal role of oxidative stress. Our data clearly indicate divergent effects of age between different skeletal muscles on mitochondrial protein homeostasis and function with the greatest differences related to complex I. These results show the importance of tissue‐specific changes in the interaction between dysregulation of respiratory protein expression, oxidative stress, and mitochondrial function with age.  相似文献   

10.
[Na]i, [K]i and wet weight of the extensor digitrum longus (EDL) and soleus (SOL) muscles of 9- and 52-week-old rats were measured for 7 days after sectioning of the sciatic nerve. The changes in wet weight of the EDL and SOL muscles of rats over 52 weeks and those of morbid state rats were also measured. There was no significant difference in wet weights between the EDL and SOL muscles in infant rats, but the EDL muscle became much heavier than the SOL muscle with aging. The decrease in rate of growth of wet weight of the EDL and SOL muscles caused by denervation, was greater in young rats than in mature rats. In addition, the rate of decrease was greater in the SOL muscles than in the EDL muscles in both young and mature rats. The [Na]i increased while [K]i was decreased by denervation, and the net Na+ increase and the net K+ loss were greater in young rats than in mature rats. The changing rate was more remarkable in the EDL muscles than in the SOL muscles throughout the aging process. During DOCA treatment over 4 weeks, the decrease of muscle wet weight was greater in the EDL muscles. The mechanisms which serve to maintain normal muscle wet weight in the SOL muscle after denervation or treatment with DOCA, were discussed.  相似文献   

11.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

12.
The neuroanatomical organization of the dynamic (bag1) and static (bag2 and chain) intrafusal systems was compared by light and electron microscopy of serial sections among 71 poles of muscle spindle in soleus (SOL), extensor digitorum longus (EDL), and lumbrical (LUM) muscles in the rat. Eighty-four percent of 195 fusimotor (gamma) axons to the spindles innervated either the dynamic bag1 fiber or the static bag2 and/or chain fibers. Sixteen percent of the gamma axons coinnervated the dynamic and static intrafusal fibers. Some of these nonselective axons were branches of effernts that also gave rise to axons selective to either the dynamic or static types of intrafusal fibers in one or more spindles. Thus activation of individual stem gamma efferents might not have a purely dynamic or purely static effect on the integrated afferent outflow from spindles of a hindlimb muscles in the rat. In addition, primary afferents in all muscles had terminations that cross-innervated the dynamic bag1 and static bag1 and/or chain intrafusal fibers in individual spindles, an arrangement that may enhance the mixed dynamic/static behavior of afferents when different intrafusal fibers are activated concurrent. Spindles of the slow SOL and fast EDL muscles had similar features, whereas differences were observed in the organization of the proximal (SOL and EDL) and distal (LUM) muscles. Spindles in LUM muscles had fewer static intrafusal fibers, a higher ratio of dynamic to static gamma axons, and a higher incidence of skeletofusimotor (beta) innervation to intrafusal fibers than spindles in the SOL or EDL muscles. Thus, the relative contribution of dynamic and static systems to muscle afferent outflow may differ among spindles located in different segments of the rat hindlimb. However, the dynamic and static intrafusal systems of spindle were less sharply demarcated in each of the three hindlimb rat muscles than in the cat tenuissimus muscle.  相似文献   

13.
In this study, conducted on mice of the C57BL/6J+/+ strain, we investigated the differential effects of denervation on the isometric contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles. The contractile properties were studied at 1, 28, 84, and 210 days following unilateral section of the sciatic nerve at 12 weeks of age. When isometric tetanus tension was expressed relative to wet weight, the denervated SOL showed an earlier and more pronounced loss in tension generating capacity than the EDL. Both the denervated SOL and EDL showed potentiation of the twitch tension at 28 days postdenervation. The time to peak twitch tension (TTP) and the time to half-relaxation (1/2RT) were prolonged by 28 days postdenervation in both muscles. This trend continued to the oldest age-groups studied in the EDL, but reached an apparent plateau in the SOL at 84 days postdenervation. In response to fatigue, the denervated SOL showed a marked decrease in resistance to fatigue at 1 day but a relatively normal response thereafter, whereas the denervated EDL showed an increase in resistance to fatigue at and beyond the 28-day period. In spite of the fact that the total contraction time of both muscles increased following denervation, the predominantly oxidative SOL remained a slower contracting muscle than the more glycolytic EDL.  相似文献   

14.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

15.
The present study characterized total and myofibrillar protein breakdown rates in a muscle preparation frequently used in vitro, i.e. incubated extensor digitorum longus (EDL) and soleus (SOL) muscles of young rats. Total and myofibrillar protein breakdown rates were assessed by determining net production by the incubated muscles of tyrosine and 3-methylhistidine (3-MH) respectively. Both amino acids were determined by h.p.l.c. Both total and myofibrillar protein breakdown rates were higher in SOL than in EDL muscles and were decreased by incubating the muscles maintained at resting length, rather than flaccid. After fasting for 72 h, total protein breakdown (i.e. tyrosine release) was increased by 73% and 138% in EDL muscles incubated flaccid and at resting length respectively. Net production of tyrosine by SOL muscle was not significantly altered by fasting. In contrast, myofibrillar protein degradation (i.e. 3-MH release) was markedly increased by fasting in both muscles. When tissue was incubated in the presence of 1 munit of insulin/ml, total protein breakdown rate was inhibited by 17-20%, and the response to the hormone was similar in muscles incubated flaccid or at resting length. In contrast, myofibrillar protein breakdown rate was not altered by insulin in any of the muscle preparations. The results support the concepts of individual regulation of myofibrillar and non-myofibrillar proteins and of different effects of various conditions on protein breakdown in different types of skeletal muscle. Thus determination of both tyrosine and 3-MH production in red and white muscle is important for a more complete understanding of protein regulation in skeletal muscle.  相似文献   

16.
The purpose of this study was to determine if PKB signaling is decreased and contractile protein degradation is increased in extensor digitorum longus (EDL) and soleus (SOL) muscles from middle-aged (MA) and aged (AG) mice. We also examined the effect of age on atrogene expression in quadriceps muscle. PKB activity, as assessed by Thr(308) and Ser(473) phosphorylation, was significantly higher in EDL and SOL muscles from AG than MA mice. The age-related increase in PKB activity appears to be due to an increase in expression of the kinase, as PKB-α and PKB-β levels were significantly higher in EDL and SOL muscles from AG than MA mice. The phosphorylation of forkhead box 3a (FOXO3a) on Thr(32), a PKB target, was significantly higher in EDL muscles from AG than MA mice. The rate of contractile protein degradation was similar in EDL and SOL muscles from AG and MA mice. Atrogin-1 and muscle-specific RING finger protein 1 (MuRF-1) mRNA levels did not change in muscles from AG compared with MA mice, indicating that ubiquitin-proteasome proteolysis does not contribute to sarcopenia. A significant decrease in Bcl-2 and 19-kDa interacting protein 3 (Bnip3) and GABA receptor-associated protein 1 (Gabarap1) mRNA was observed in muscles from AG compared with MA mice, which may contribute to age-related contractile dysfunction. In conclusion, the mechanisms responsible for sarcopenia are distinct from experimental models of atrophy and do not involve atrogin-1 and MuRF-1 or enhanced proteolysis. Finally, a decline in autophagy-related gene expression may provide a novel mechanism for impaired contractile function and muscle metabolism with advancing age.  相似文献   

17.
朱培闳  李凯训 《生理学报》1986,38(2):107-115
在大鼠慢肌比目鱼肌(SOL)肌纤维的肌-腱接头(MTJ)上有较高的乙酰胆碱(ACh)敏感牲,而快肌伸趾长肌(EDL)的 MTJ却没有。SOL 肌纤维受 EDL神经交叉支配后,其 MTJ的 ACh敏感性消失,此点 Miledi等已有报道。本文首先验证了与此相对称的结果,即EDL 肌纤维受 SOL神经交叉支配后,其 MTJ获得与正常 SOL肌纤维 MTJ相似的 ACh敏感性,从而进一步肯定了MTJ 的ACh 敏感性的出现是由特殊神经支配决定的。本文的主要结果是:兼受 SOL神经和 EDL神经支配的EDL和SOL的纤维,其MTJ都没有AGh 敏感性。这一结果的兴趣,不但在于它显示当两种神经支配同时存在时,快肌神经的影响压倒慢肌神经,而且还在于此结果与以往用其他指标进行的双神经支配肌纤维实验的结果形成鲜明的对照:用 M-ATPase 组织化学染色和Z带宽度等变化为指标,在双神经支配肌纤维中,慢肌神经的影响总压倒快肌神经。我们也观察了长期电刺激对MTJ ACh敏感性的影响。SOL经“慢”型刺激2—3周后,其 MTJ的 ACh敏感性虽有降低,但不及“快”型刺激显著。综合各种有关的观察,本文对双神经支配肌纤维的 MTJ没有 ACh敏感性这一主要结果的解释进行了讨论。  相似文献   

18.
Summary The fine structure of the M-band in soleus (SOL) and extensor digitorum longus (EDL) muscles in newborn and four-week-old rats was studied using electron-microscopic techniques. In newborn rats, all myotubes and fibres in both muscles had an identical myofibrillar appearance. A five-line M-band pattern was seen in longitudinal sections and distinct M-bridges in cross-sections. The Z-discs were of medium width. On the other hand, in four-week-old rats, different muscle fibre types were observed on the basis of their myofibrillar pattern. In SOL two fibre types were distinguished in longitudinal sections. One had a four-line M-band pattern and very broad Z-discs, whereas the other type had five lines in the M-band and broad Z-discs. In EDL, three different myofibrillar patterns were observed. The M-bands were composed of three, four or five lines. Fibres had either thin, broad or medium Z-disc widths, respectively. In cross-sections of the SOL muscle one group of fibres showed indistinct M-bridges, whereas distinct M-bridges were seen in the other fibres and in all observed EDL muscle fibres. We conclude that initially there seems to be a single intrinsic program for M-band genesis; this program becomes modified upon the induction of functionally differentiated fibres.  相似文献   

19.
Heat shock proteins (HSPs) are essential for normal cellular stress responses. Absolute amounts of HSP72, HSP25, and αB-crystallin in rat extensor digitorum longus (EDL) and soleus (SOL) muscle were ascertained by quantitative Western blotting to better understand their respective capabilities and limitations. HSP72 content of EDL and SOL muscle was only ~1.1 and 4.6 μmol/kg wet wt, respectively, and HSP25 content approximately twofold greater (~3.4 and ~8.9 μmol/kg, respectively). αB-crystallin content of EDL muscle was ~4.9 μmol/kg but in SOL muscle was ~30-fold higher (~140 μmol/kg). To examine fiber heterogeneity, HSP content was also assessed in individual fiber segments; every EDL type II fiber had less of each HSP than any SOL type I fiber, whereas the two SOL type II fibers examined were indistinguishable from the EDL type II fibers. Sarcolemma removal (fiber skinning) demonstrated that 10-20% of HSP25 and αB-crystallin was sarcolemma-associated in SOL fibers. HSP diffusibility was assessed from the extent and rate of diffusion out of skinned fiber segments. In unstressed SOL fibers, 70-90% of each HSP was readily diffusible, whereas ~95% remained tightly bound in fibers from SOL muscles heated to 45°C. Membrane disruption with Triton X-100 allowed dispersion of HSP72 and sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps but did not alter binding of HSP25 or αB-crystallin. The amount of HSP72 in unstressed EDL muscle is much less than the number of its putative binding sites, whereas SOL type I fibers contain large amounts of αB-crystallin, suggesting its importance in normal cellular function without upregulation.  相似文献   

20.
mRNA levels for the type I and type II isoforms of sarcoplasmic reticulum (SR) Ca-ATPase were determined in soleus (SOL) and extensor digitorum longus (EDL) muscle of euthyroid (normal), hypothyroid, and hyperthyroid rats. Total Ca-ATPase mRNA content of hyperthyroid muscle was 1.5-fold (EDL) and 6-fold (SOL) higher compared to hypothyroid muscle, with corresponding increases in total SR Ca-ATPase activity. EDL contained only type II Ca-ATPase mRNA. In SOL type I mRNA was the major form in hypothyroidism (98%), but the type II mRNA content was stimulated 150-fold by T3, accounting for 50% of the Ca-ATPase mRNA in hyperthyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号