首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In the present study, the role of finger millet feeding on skin antioxidant status, nerve growth factor (NGF) production and wound healing parameters in healing impaired early diabetic rats is reported. Hyperglycemic rats received food containing 50 g/100 g finger millet (FM). Non-diabetic controls and diabetic controls received balanced nutritive diet. Full-thickness excision skin wounds were made after 2 weeks prior feeding of finger millet diet. The rate of wound contraction, and the levels of collagen, hexosamine and uronic acid in the granulation tissue were determined. The skin antioxidant status and lipid peroxide concentration were also monitored during the study. In hyperglycemic rats fed with finger millet diet, the healing process was hastened with an increased rate of wound contraction. Skin levels of glutathione (GSH), ascorbic acid and alpha-tocopherol in alloxan-induced diabetic rat were lower as compared to non-diabetics. Altered activities of superoxide dismutase (SOD) and catalase (CAT) were also recorded in diabetics. Interestingly, thiobarbituric acid reactive substances (TBARS) were elevated in the wound tissues of all the groups, when compared to normal (unwounded) skin tissues. However, in diabetic rats the TBARS levels of both normal and wounded skin tissues were significantly elevated (P < 0.001) when compared with control (non-diabetic) and diabetics fed with FM. Impaired production of NGF, determined by ELISA, in diabetic rats was improved upon FM feeding and further confirmed by immunocytochemical observations reflects the increased expression of NGF in hyperglycemic rats supplemented with FM-enriched diet. Histological and electron microscopical evaluations revealed the epithelialization, increased synthesis of collagen, activation of fibroblasts and mast cells in FM-fed animals. Thus, increased levels of oxidative stress markers accompanied by decreased levels of antioxidants play a vital role in delaying wound healing in diabetic rats. However, FM feeding to the diabetic animals, for 4 weeks, controlled the glucose levels and improved the antioxidant status, which hastened the dermal wound healing process.  相似文献   

2.
The objective of this work was initially to investigate the effects on skin wound healing process by local injection of HSP47 recombinant plasmid in an alloxan-induced diabetic rat model and assess the possibility and utility of gene therapy based on HSP47 plasmid to improve the diabetic skin wound healing. Rats were injected intraperitoneally with alloxan (120 mg/kg) to induce diabetes. The fragment containing the rat 47 kDa heat shock protein (HSP47) gene lacking its own promoter was cloned into plasmids containing a promoter and green fluorescent protein (GFP). The resulting gene constructs were first tested in vitro using 3T3 fibroblast cell line and subsequently in vivo after inducing wounds with alloxan in diabetic rats. Immunohistochemistry, quantitative fluorescent RT-PCR, and Western blotting 3-5 days after plasmid injection were performed to measure the expression changes of HSP47 and collagen I. The results demonstrate an increase of HSP47 levels in vitro in 3T3 fibroblast cells and in vivo in diabetic rat after treatment with plasmids expressing HSP47. The level of collagen I around the wound during the repair process was higher in the treated group than that in the control group, indicating that the constructs may have use in human gene therapy in cases of impaired skin wound healing in diabetes.  相似文献   

3.
Alteration of the radiation-induced changes in wound contraction, collagen synthesis and wound histology by ascorbic acid was studied in mice exposed to 10, 16 and 20 Gy of fractionated (2 Gy/fraction) gamma radiation. The animals were given double-distilled water or ascorbic acid daily before exposure to 2 Gy/day of fractionated irradiation. A full-thickness skin wound was created on the dorsum of the irradiated mice, and the progression of wound contraction and collagen synthesis were examined and histological evaluations were carried out at various times after wounding. Irradiation caused a dose-dependent delay in wound contraction, and pretreatment with ascorbic acid resulted in a significant increase in wound contraction. The greatest increase in wound contraction was observed 6 and 9 days after wounding in both groups. Pretreatment with ascorbic acid augmented the synthesis of collagen significantly as revealed by an increase in hydroxyproline content. The collagen deposition and fibroblast and vasculature densities declined in a dose-dependent manner in groups receiving radiation alone as indicated by histological evaluation. Pretreatment with ascorbic acid ameliorated the observed effect significantly. These studies demonstrate that pretreatment with ascorbic acid resulted in a significant reduction of radiation-induced delay in wound healing as shown by earlier wound closure and increased collagen content and fibroblast and vascular densities.  相似文献   

4.
Lumican is a dermatan sulfate proteoglycan highly expressed in connective tissue and has the ability to regulate collagen fibril assembly. Previous studies have shown that lumican is involved in wound healing, but the precise effects of lumican on reepithelialization and wound contraction, the two pivotal aspects of skin wound healing, have not been investigated. Here we explored the roles of lumican in fibroblast contractility, a main aspect of skin wound healing, by adopting mice skin wound healing model and the corresponding in vitro cellular experiments. Our results showed that lumican can promote skin wound healing by facilitating wound fibroblast activation and contraction but not by promoting keratinocyte proliferation and migration. Silencing of integrin α2 completely abolished the pro-contractility of lumican, indicating lumican enhances fibroblast contractility via integrin α2. Our study for the first time demonstrated that lumican can affect fibroblast’s mechanical property, which is pivotal for many important pathological processes, such as wound healing, fibrosis, and tumor development, suggesting that lumican might have a potential to be used to modulate these processes.  相似文献   

5.
The reasons that cause delay in wound healing in diabetes are a decrease in the level of growth factors secretion, an increase in the destruction of growth factors and in oxidative stress. Platelet derived growth factor (PDGF) is one of the important growth factors that play a role in all phases of wound healing. This study investigates time-dependent effects of topically PDGF-BB administration on oxidative events on the healing of dorsolateral-excisional wounds in diabetic rats. Forty-two female Wistar-albino rats with streptozotocin-induced diabetes were divided into four groups: control group, untreated group, chitosan-treated group, chitosan?+?PDGF-BB-treated group. Two identical full-thickness excisional skin wounds were made under anaesthesia in all rats except for the control group. In the PDGF-BB-treated and chitosan-treated groups, the wounds were treated topically PDGF-BB (7?ng/mL, single daily dose) and blank chitosan gel (equal amount) after wounding, respectively. After these administrations, on day 3 and day 7 of wound healing, rats were sacrificed. Thiobarbituric acid reactive substances, glutathione, nitric oxide, ascorbic acid levels, and superoxide dismutase activity in wound tissues were spectrophotometrically measured. PDGF-BB administration significantly increased TBARS levels and non-enzymatic antioxidant levels in early phase of diabetic wound healing. PDGF-BB dramatically reduced NOx levels on day 3 and sharply increased NOx levels on day 7 of wound healing. Consequently, PDGF-BB administration can be effective on oxidative balance in the early phase of diabetic wound healing.  相似文献   

6.
Irrespective of underlying chronic wound pathology, delayed wound healing is normally characterised by impaired new tissue formation at the site of injury. It is thought that this impairment reflects both a reduced capacity to synthesize new tissue and the antagonistic activities of high levels of proteinases within the chronic wound environment. Historically, wound dressings have largely been passive devices that offer the wound interim barrier function and establish a moist healing environment. A new generation of devices, designed to interact with the wound and promote new tissue formation, is currently being developed and tested. This study considers one such device, oxidised regenerated cellulose (ORC) /collagen, in terms of its ability to promote fibroblast migration and proliferation in vitro and to accelerate wound repair in the diabetic mouse, a model of delayed wound healing. ORC/collagen was found to promote both human dermal fibroblasts proliferation and cell migration. In vivo studies considered the closure and histological characteristics of diabetic wounds treated with ORC/collagen compared to those of wounds given standard treatment on both diabetic and non-diabetic mice. ORC/collagen was found to significantly accelerate diabetic wound closure and result in a measurable improvement in the histological appearance of wound tissues. As the diabetic mouse is a recognised model of impaired healing, which may share some characteristics of human chronic wounds, the results of this in vivo study, taken together with those relating the positive effects of ORC/collagen in vitro, may predict the beneficial use of this device in the clinical setting.  相似文献   

7.
To understand the role of tendon fibroblast contraction in tendon healing, we investigated the contraction of human patellar tendon fibroblasts (HPTFs) and its regulation by transforming growth factor-beta1 (TGF-beta1), TGF-beta3, and prostaglandin E(2) (PGE(2)). HPTFs were found to wrinkle the underlying thin silicone membranes, demonstrating that these tendon fibroblasts are contractile. Using fibroblast populated collagen gels (FPCGs), exogenous addition of TGF-beta1 or TGF-beta3 was found to increase fibroblast contraction compared to non-treated fibroblasts in serum-free medium, whereas PGE(2) was found to decrease the tendon fibroblast contraction. Moreover, the tendon fibroblasts in collagen gels treated with TGF-beta1 contracted to a greater degree than those treated with TGF-beta3. Since the extent of fibroblast contraction is related to scar tissue formation, this differential effect of TGF-beta1 and TGF-beta3 on HPTF contraction supports the previous finding that TGF-beta1 induces scar tissue formation, whereas TGF-beta3 reduces its formation. Further, the reduced tendon fibroblast contraction by PGE(2) suggests that excessive presence of this inflammatory mediator in the wound site might retard tendon healing. Taken together, the results of this study suggest that regulation of human tendon fibroblast contraction may reduce scar tissue formation and therefore improve the mechanical properties of healing tendons.  相似文献   

8.
Fibronectin (Fn) has been shown to play an important role in wound healing because it appears to be the stimulus for migration of fibroblasts and epidermal cells. The purpose of this study was to investigate whether topical application of plasma Fn (pFn) improves healing of full-thickness skin wounds in rats. A round section of full-thickness skin (diameter of approximately 15 mm) was resected in rats. Animals were then divided into two groups, and wounds were treated topically with a single application of human plasma albumin (control group) or human pFn (FN group). Wound closure rate, hydroxyproline concentration, and histologic features (immunohistochemical staining) were evaluated. The FN group had a significantly higher wound closure rate and hydroxyproline level in the skin than the control group. Histologic analysis of macrophage and fibroblast migration, collagen regeneration, and epithelialization were significantly increased in the FN group compared with the control group. A single topical application of pFn increased the migration of macrophages, myofibroblasts, and fibroblasts. Moreover, further release of transforming growth factor-beta1 from activated fibroblasts, keratinocytes, and epithelial cells may also contribute to the beneficial effect of pFn on wound healing.  相似文献   

9.
In this study, we investigated the role of nerve growth factor (NGF)-incorporated collagen on wound healing in rats. Full-thickness excision wounds were made on the back of female rats weighing about 150-160 g. Topical application of NGF-incorporated collagen, at a concentration of 1 microg/1.2 mg collagen/cm(2), once a day, for 10 days resulted in complete healing of wounds on the 15th day. The concentrations of collagen, hexosamine and uronic acid in the granulation tissue were determined. The NGF-incorporated collagen-treated rats required shorter duration for the healing with an increased rate of wound contraction. Histological and electron microscopical evaluations were also performed, which reveal the activation of fibroblasts and endoplasmic reticulum and therefore increased level of collagen synthesis due to NGF application. These results clearly indicate that the topical application of NGF-incorporated collagen enhanced the rate of healing of excision wounds.  相似文献   

10.
The effect of myofibroblast on contracture of hypertrophic scar   总被引:14,自引:0,他引:14  
Wound contraction in humans has both positive and negative effects. It is beneficial to wound healing by narrowing the wound margins, but the formation of undesirable scar contracture brings cosmetic and even functional problems. The entire mechanism of wound healing and scar contracture is not clear yet, but it is at least considered that both the fibroblasts and the myofibroblasts are responsible for contraction in healing wounds. The myofibroblast is a cell that possesses all the morphologic and biochemical characteristics of both a fibroblast and a smooth muscle cell. Normally, the myofibroblasts appear in the initial wound healing processes and generate contractile forces to pull both edges of an open wound until it disappears by apoptosis. But as an altered regulation of myofibroblast disappearance, they remain in the dermis and continuously contract the scar, eventually causing scar contracture. In this research, to compare and directly evaluate the influence on scar contracture of the myofibroblast versus the fibroblast, dermal tissues were taken from 10 patients who had highly contracted hypertrophic scars. The myofibroblasts were isolated and concentrated from the fibroblasts using the magnetic activating cell-sorting column to obtain the myofibroblast group, which contained about 28 to 41 percent of the myofibroblasts, and the fibroblast group, which contained less than 0.9 percent of the myofibroblasts. Each group was cultured in the fibroblast-populated collagen lattice for 13 days, and the contraction of the collagen gel was measured every other day. In addition, they were selectively treated with tranilast [N-(3',4'-dimethoxycinnamoyl) anthranilic acid] to evaluate the influence on the contraction of the collagen gel lattice. During the culture, the myofibroblast group, compared with the fibroblast group, showed statistically significant contraction of the collagen gel lattice day by day, except on the first day, and only the myofibroblast group was affected by tranilast treatment, showing significant inhibition of gel contraction. By utilizing an in vitro model, the authors have demonstrated that myofibroblasts play a more important role in the contracture of the hypertrophic scar.  相似文献   

11.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   

12.
ObjectivesHistatin 1(Hst 1) has been proved to promote wound healing. However, there was no specific study on the regulation made by Hst 1 of fibroblasts in the process of wound healing. This research comprehensively studied the regulation of Hst 1 on the function of fibroblasts in the process of wound healing and preliminary mechanism about it.Materials and methodsThe full‐thickness skin wound model was made on the back of C57/BL6 mice. The wound healing, collagen deposition and fibroblast distribution were detected on days 3, 5 and 7 after injury. Fibroblast was cultured in vitro and stimulated with Hst 1, and then, their biological characteristics and functions were detected.ResultsHistatin 1 can effectively promote wound healing, improve collagen deposition during and after healing and increase the number and function of fibroblasts. After healing, the mechanical properties of the skin also improved. In vitro, the migration ability of fibroblasts stimulated by Hst 1 was significantly improved, and the fibroblasts transformed more into myofibroblasts, which improved the function of contraction and collagen secretion. In fibroblasts, mTOR signalling pathway can be activated by Hst 1.ConclusionsHistatin 1 can accelerate wound healing and improve the mechanical properties of healed skin by promoting the function of fibroblasts. The intermolecular mechanisms need to be further studied, and this study provides a direction about mTOR signalling pathway.  相似文献   

13.
Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT–loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72 h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT–loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p < 0.01) and IL-1β (p < 0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p < 0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.  相似文献   

14.
The adult hair follicle has well-defined dermal and epithelial populations that display distinct developmental properties. The follicular dermal cells, namely the dermal papilla and dermal sheath, are derived from the same mesenchymal cells as dermal fibroblasts and therefore, we believed that follicular cells could be useful sources of interfollicular keratinocytes and fibroblast for skin wound repair. In this study, we evaluated the relative effect of various mesenchymal-derived cells on wound healing following skin injury. Human dermal cells, including two different follicular dermal cells and skin fibroblasts were cultured in collagen sponges and compared with respect to wound healing. Results indicated that there was no significant difference in wound contraction and angiogenesis among the cell types. Further, dermal sheath cells exhibited relatively poor results compared with other cells in new collagen synthesis. Finally, basement membrane reformation and new collagen synthesis for the dermal papilla cell grafts was superior to those of the dermal sheath cells or fibroblasts.  相似文献   

15.
Wang W  Lin S  Xiao Y  Huang Y  Tan Y  Cai L  Li X 《Life sciences》2008,82(3-4):190-204
In order to develop a better wound-dressing to enhance diabetic wound healing, we have examined the biochemical and biophysical features of chitosan-crosslinked collagen sponge (CCCS) and pre-clinically evaluated the CCCS containing recombinant human acidic fibroblast growth factor (CCCS/FGF) in accelerating diabetic wound healing as compared to collagen sponge alone and FGF alone. Collagen crosslinked with chitosan showed several advantages required for wound dressing, including the uniform and porous ultrastructure, less water-imbibition, small interval porosity, high resistance to collagenase digestion and slow release of FGF from CCCS/FGF. Therapeutic effect of the new wound-dressing containing FGF (i.e.: CCCS/FGF) on diabetic wound healing was examined in type 1 diabetic rat model in which hyperglycemia was induced by single dose of streptozotocin (STZ) and persisted for two months. The CCCS/FGF provided the most efficiently therapeutic effect among various treatments, showing the shortest healing time (14 days in the CCCS/FGF-treated group as compared to 18~21 days in other treatment groups), the quickest tissue collagen generation, the earliest and highest TGF-beta1 expression and dermal cell proliferation (PCNA expression). All these results suggest that CCCS/FGF is an ideal wound-dressing to improve the recovery of healing-impaired wound such as diabetic skin wound, which provides a great potential use in clinics for diabetic patients in the future.  相似文献   

16.
Delayed wound healing is a common complication in diabetes mellitus. From this point of view, the main purpose of the present study is to investigate the effect of extremely low frequency pulsed electromagnetic fields (ELF PEMFs) on skin wound healing in diabetic rats. In this study, diabetes was induced in male Wistar rats via a single subcutaneous injection of 65 mg/kg streptozocin (freshly dissolved in sterile saline, 0.9%). One month after the induction of diabetes, a full‐thickness dermal incision (35 mm length) was made on the right side of the paravertebral region. The wound was exposed to ELF PEMF (20 Hz, 4 ms, 8 mT) for 1 h per day. Wound healing was evaluated by measuring surface area, percentage of healing, duration of healing, and wound tensile strength. Obtained results showed that the duration of wound healing in diabetic rats in comparison with the control group was significantly increased. In contrast, the rate of healing in diabetic rats receiving PEMF was significantly greater than in the diabetic control group. The wound tensile strength also was significantly greater than the control animals. In addition, the duration of wound healing in the control group receiving PEMF was less than the sham group. Based on the above‐mentioned results we concluded that this study provides some evidence to support the use of ELF PEMFs to accelerate diabetic wound healing. Further research is needed to determine the PEMF mechanisms in acceleration of wound healing in diabetic rats. Bioelectromagnetics 31:318–323, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Hemibody irradiation in multiple fractionated doses is frequently used for the treatment of various neoplastic disorders. It produces both acute and late effects on the skin and subcutaneous tissues that have profound implications in the healing of surgical wounds. Because of the crucial practical importance of hemibody radiation exposure associated with skin wounds, it is imperative to investigate the efficacy of cost-effective herbal products in the reconstruction of irradiated wounds. Therefore, the effect of pretreatment of curcumin was studied on the healing of excision wound in mice exposed to 2, 4, 6, or 8 Gy of hemibody gamma-radiation. A full-thickness skin wound was created by removing the skin flap of the dorsum of 8- to 10-week-old Swiss albino mice partially (lower half, below the rib cage) exposed to 2, 4, 6, or 8 Gy of gamma-radiation. The progression of wound contraction was monitored periodically by capturing video images of the wound, where the first image of each wound from different groups was obtained 1 day after wounding and that day was considered as day 0. Eight animals were used in each group at each exposure dose for wound contraction studies. Furthermore, the effect of curcumin on mean healing time after exposure of mice to 2, 4, 6, or 8Gy of hemibody gamma-radiation was also evaluated, where eight animals were used in each group at each exposure dose. Collagen, hexosamine, DNA, nitric oxide, and histologic profiles were also evaluated during the course of healing of excision wounds at days 4, 8, and 12 after irradiation treated or not with curcumin before exposure to 0 or 6 Gy of gamma-radiation. Six animals were used in each group at each interval for each biochemical parameter studied, except for histologic evaluations, where four animals were used in each group at each interval. Exposure of mice to different doses of gamma-radiation resulted in a dose-dependent delay in contraction and wound-healing time of excision wound, whereas curcumin pretreatment caused a significant elevation in the rate of wound contraction and a decrease in the mean wound-healing time. Treatment with curcumin before irradiation enhanced the synthesis of collagen, hexosamine, DNA, nitrite, and nitrate, and histologic assessment of wound biopsy specimens revealed improved collagen deposition and an increase in fibroblast and vascular densities. The authors' study demonstrates that curcumin pretreatment has a conducive effect on the irradiated wound and could be a substantial therapeutic strategy for ameliorating radiation-induced delay in wound repair in cases of radiation-induced skin injuries.  相似文献   

18.
Burn scar contracture that follows the healing of deep dermal burns causes severe deformation and functional impairment. However, its current therapeutic interventions are limited with unsatisfactory outcomes. When we treated deep second-degree burns in rat skin with activin-like kinase 5 (ALK5) inhibitor A-83-01, it reduced wound contraction and enhanced the area of re-epithelialization so that the overall time for wound closing was not altered. In addition, it reduced myofibroblast population in the dermis of burn scar with a diminished deposition of its biomarker proteins such as α-SMA and collagen. Treatment of rat dermal fibroblast with A-83-01 inhibited transforming growth factor-β1 (TGF-β1)-dependent induction of α-SMA and collagen type I. Taken together, these results suggest that topical application of ALK5 inhibitor A-83-01 could be effective in preventing the contraction of burn wound without delaying the wound closure by virtue of its inhibitory activity against the TGF-β-induced increase of myofibroblast population.  相似文献   

19.
Multipotent mesenchymal stem cells have recently emerged as an attractive cell type for the treatment of diabetes-associated wounds. The purpose of this study was to examine the potential biological function of human placenta-derived mesenchymal stem cells (PMSCs) in wound healing in diabetic Goto-Kakizaki (GK) rats. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. A full-thickness circular excisional wound was created on the dorsum of each rat. Red fluorescent CM-DiI-labeled PMSCs were injected intradermally around the wound in the treatment group. After complete wound healing, full-thickness skin samples were taken from the wound sites for histological evaluation of the volume and density of vessels. Our data showed that the extent of wound closure was significantly enhanced in the PMSCs group compared with the no-graft controls. Microvessel density in wound bed biopsy sites was significantly higher in the PMSCs group compared with the no-graft controls. Most surprisingly, immunohistochemical studies confirmed that transplanted PMSCs localized to the wound tissue and were incorporated into recipient vasculature with improved angiogenesis. Notably, PMSCs secreted comparable amounts of proangiogenic molecules, such as VEGF, HGF, bFGF, TGF-β and IGF-1 at bioactive levels. This study demonstrated that PMSCs improved the wound healing rate in diabetic rats. It is speculated that this effect can be attributed to the PMSCs engraftment resulting in vascular regeneration via direct de novo differentiation and paracrine mechanisms. Thus, placenta-derived mesenchymal stem cells are implicated as a potential angiogenesis cell therapy for repair-resistant chronic wounds in diabetic patients.  相似文献   

20.
Influence of finger millet and kodo millet on rat dermal wound healing was assessed by making a 4 cm2 (2 x 2 cm) excision wound on the shaven back of rats under ether anesthesia. Finger millet or kodo millet flour (300 mg) as aqueous paste was applied topically once daily for 16 days. The granulation tissue formed on day 4, 8 and 12 was used to estimate some biochemical parameters like protein, DNA, collagen and lipid peroxides. There was significant increase in protein and collagen contents and decrease in lipid peroxides. Biophysical parameters like rate of contraction and number of days for epithelialization were also studied. Rate of contraction was 88-90% in kodo millet and finger millet treated rats in comparison to 75% in untreated rats. The number of days for complete closure of wounds was lower for finger millet (13 days) and kodo millet (14 days) treated rats in comparison to untreated (16 days) rats. The results implicate a possible therapeutical role for finger millet and kodo millet in accelerating the process of wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号