首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs) are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development- firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage) are assigned. An 84 “parentage SNP panel” was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams) was absent, highlighting the SNP test’s suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry.  相似文献   

2.
The effectiveness of low cost breeding scheme designs for small aquaculture breeding programmes were assessed for their ability to achieve genetic gain while managing inbreeding using stochastic simulation. Individuals with trait data were simulated over 15 generations with selection on a single trait. Combinations of selection methods, mating strategies and genetic evaluation options were evaluated with and without the presence of common environmental effects. An Optimal Parent Selection (OPS) method using semi-definite programming was compared with a truncation selection (TS) method. OPS constrains the rate of inbreeding while maximising genetic gain. For either selection method, mating pairs were assigned from the selected parents by either random mating (RM) or Minimum Inbreeding Mating (MIM), which used integer programming to determine mating pairs. Offspring were simulated for each mating pair with equal numbers of offspring per pair and these offspring were the candidates for selection of parents of the next generation. Inbreeding and genetic gain for each generation were averaged over 25 replicates. Combined OPS and MIM led to a similar level of genetic gain to TS and RM, but inbreeding levels were around 75% lower than TS and RM after 15 generations. Results demonstrate that it would be possible to manage inbreeding over 15 generations within small breeding programmes comprised of 30 to 40 males and 30 to 40 females with the use of OPS and MIM. Selection on breeding values computed using Best Linear Unbiased Prediction (BLUP) with all individuals genotyped to obtain pedigree information resulted in an 11% increase in genetic merit and a 90% increase in the average inbreeding coefficient of progeny after 15 generations compared with selection on raw phenotype. Genetic evaluation strategies using BLUP wherein elite individuals by raw phenotype are genotyped to obtain parentage along with a range of different samples of remaining individuals did not increase genetic progress in comparison to selection on raw phenotype. When common environmental effects on full-sib families were simulated, performance of small breeding scheme designs was little affected. This was because the majority of selection must anyway be applied within family due to inbreeding constraints.  相似文献   

3.
A selection experiment on litter size in the pig was carried on for seventeen generations in an Inra experimental herd. The founder population was made up of 10 males and 120 females from the Large White breed. Selection was first performed for ten generations in a closed line, compared to a control line derived from the same founder population. Selection was carried on within sire family on the total number of piglets born in the first two litters of the dam (TB1 + TB2). After ten generations, the selection criterion became dam TB1 only. The control line was then discontinued and a panel of frozen semen from the 11th generation boars was created for later comparisons. The selected line was opened to gilt daughters of hyperprolific boars and sows, at a rate of 1/8 per generation, and the same selection procedure was applied irrespective of the origin of the gilt. During the whole experiment, the number of ova shed (OS) and the number of live embryos (LE) at 30 days in the 3rd pregnancy were recorded. These two parts of the experiment were analysed using REML estimation of genetic parameters and a BLUP-Animal Model in order to estimate the responses to selection. Significant heritabilities for TB1, TB2, OS and LE were obtained, i.e. 0.10, 0.05, 0.43 and 0.19, respectively. Significant common environment variances and covariances were estimated for nearly all traits. Significantly positive BLUP responses per generation were observed from G0 to G17 for TB1 (+0.086), TB2 (+0.078), OS (+0.197) and LE (+0.157). However, the responses were 3- to 4-fold higher in the G12–G17 interval compared to G0–G11, and they were also in fair agreement with previous estimates based on standard least-squares procedures, using the control line and the control frozen semen panel. Since G11, the selection intensity was increased by nearly 80 p. cent compared to the previous generations, and the proportion of hyperprolific ancestry increased up to 65 p. cent in the sows of the last generation. The total genetic gain of about 1.4 piglets at birth per litter could be shared between a gain due to immigration, of about 0.8 piglets per litter, and a within-line selection gain of about 0.6 piglets. Thus by combining selection and immigration in the second part of the experiment, advantage could be taken from both the genetic superiority of the immigrants and the higher internal selection intensity made possible by immigration.  相似文献   

4.
Because not all animal factors influencing profitability can be included in total merit breeding indices for profitability, the association between animal total merit index and true profitability, taking cognisance of all factors associated with costs and revenues, is generally not known. One method to estimate such associations is at the herd level, associating herd average genetic merit with herd profitability. The objective of this study was to primarily relate herd average genetic merit for a range of traits, including the Irish total merit index, with indicators of performance, including profitability, using correlation and multiple regression analyses. Physical, genetic and financial performance data from 1131 Irish seasonal calving pasture-based dairy farms were available following edits; data on some herds were available for more than 1 year of the 3-year study period (2007 to 2009). Herd average economic breeding index (EBI) was associated with reduced herd average phenotypic milk yield but with greater milk composition, resulting in higher milk prices. Moderate positive correlations (0.26 to 0.61) existed between genetic merit for an individual trait and average herd performance for that trait (e.g. genetic merit for milk yield and average per cow milk yield). Following adjustment for year, stocking rate, herd size and quantity of purchased feed in the multiple regression analysis, average herd EBI was positively and linearly associated with net margin per cow and per litre as well as gross revenue output per cow and per litre. The change in net margin per cow per unit change in the total merit index was €1.94 (s.e. = 0.42), which was not different from the expectation of €2. This study, based on a large data set of commercial herds with accurate information on profitability and genetic merit, confirms that, after accounting for confounding factors, the change in herd profitability per unit change in herd genetic merit for the total merit index is within expectations.  相似文献   

5.
The objective of the study presented here was to analyze the genetic relationships among heifer pregnancy (HP), age at first calving (AFC), stayability (STAY), average annual productivity of the cow, in kilograms of weaned calf per cow per year (PRODAM), postweaning weight gain (PWG), and hip height (HH) of Nelore females from 12 Brazilian herds. (Co)variance components were obtained by six-trait animal model using Gibbs sampling. The posterior mean of the heritability estimates were 0.37, 0.18, 0.19, 0.16, 0.21, and 0.37 for HP, AFC, STAY, PRODAM, PWG, and HH, respectively. In general, the genetic correlations were strong between traits related to reproduction, for example, −0.85 between HP and AFC, and 0.94 between STAY and PRODAM. Weak genetic correlations were obtained between reproductive and growth traits (absolute values ranging from 0.02 to 0.30). Although weak, the genetic correlations between PWG and reproductive traits were favorable, whereas the genetic correlations between HH and reproductive traits were close to zero and slightly unfavorable for HP, AFC, and STAY. An increase of HH is therefore expected to have little or no negative effect on the reproductive performance of females. The posterior mean of genetic correlation between PWG and HH was moderate (0.50). On the basis of the heritability, genetic correlation estimates, and time to obtain data, HP and PRODAM seems to show the best potential as selection criteria to improve the productive and reproductive performance of Nelore females. In principle, it is possible to select for increased PWG without compromising the reproduction of Nelore females. However, selection for PWG may result in an increase of female HH as a correlated response, a fact that could increase management costs in advanced generations of selection. In the light of the results, all traits studied here can be used as selection criteria and there is no strong evidence of genetic antagonism among traits related to reproduction and growth of Nelore females.  相似文献   

6.
Maternal effects play an important role in fitness and other aspects of individual performance in many species, particularly mammalian, yet their impact on genetic variation within species and its rate of loss during selection has been neglected. In this paper we extend the theory of expected long-term genetic contributions to include maternal effects, and tested the accuracy of predicted rates of inbreeding for populations under mass selection by comparison with simulations. The model includes selective advantages of direct and maternal additive genetic effects, and also the selective advantage of a common maternal environmental effect. The population structures investigated had a fixed number of dams per sire and fixed family size. Most prediction errors of the rate of inbreeding (deltaF) were less than 8% of the simulated means and were lower in magnitude than the prediction errors of genetic gain (deltaG). The predictions of deltaG from contributions equalled previously published predictions. A variation in maternal genetic effects resulted in a much larger deltaF than for an equally sized variation in common maternal environmental effects. For a fixed genetic gain, deltaF increased as the maternal heritability increased. The influence of family size, mating ratio and age structure on deltaF was greater with maternal effects than with only direct genetic effects included. In conclusion, maternal effects can be a very important aspect to consider when predicting deltaF in populations under selection, and the developed methodology gives good predictions.  相似文献   

7.
A modified crossfostering technique was developed to compare the performance of nurse dams in selected and control populations of mice. The H6 and M16 populations were selected for increased 6-week body weight and 3- to 6-week postweaning gain, respectively, while the C2 and ICR populations were the respective controls. Crossfostering was performed using H6, M16 and their reciprocal F1 crosses as nurse dams in the selected crossfostering group and C2 ICR and their reciprocals in the control group. Measurements recorded for nurse dams included mean body weight of 8 young within a nursed litter at birth (MWB) and 12 days of age (MW12). The latter was used as a measure of postnatal maternal performance. Other traits recorded for nurse dams were number born (NB), body weight at parturition (DWP) and 12 days postpartum (DW12), and weight gain (DWG), feed intake (FED) and efficiency (EFF = DWG/FED) for the first 12 days of lactation. The correlated response in MW12 was negative (P less than .01) for M16 and essentially zero for H6. Both lines exhibited positive (P less than .01) correlated responses in DWP and DW12 and no change in EFF. Only the H6 line increases significantly in DWG and FED as a result of selection. NB increased in M16 and H6, but was significant for the latter population only. Population differences in selection response [(M16-ICR)-(H6-C2)] were significant for FED only, primarily due to average direct genetic effects. Direct comparisons of M16 and H6 indicated that M16 was larger in DWP and DW12 but smaller in DWG and EFF. Average direct genetic effects favored M16 for NB, DWP, and DW12, whereas average maternal genetic effects favored H6 for NB, DWP, DW12 and FED. Percent direct heterosis, in F1 crosses of selected populations was significant for MW12 (13.7%) ,FED (10.8%) and NB (11.4%). Direct heterosis in F1 crosses of the controls was significant for MW12 (9.4%), NB (6.6%), DWP (3.5%), DW12 (3.3%) and FED (4.4%). The effects of MW12, DWG and metabolic body size (MBS) accounted for 47% of the variation in FED, pooled within populations. Of these variables, MW12 accounted for the highest proportion (32%) of variation in total feed intake.  相似文献   

8.
Brown WP  Bell AE 《Genetics》1980,94(2):477-496
Three alternative selection methods for extending selection limits or breaking response plateaus were compared over ten generations in a replicated model experiment using two unrelated populations of Drosophila melanogaster that no longer responded to purebred selection for high egg number, a heterotic polygenic trait. The three methods were: (1) reciprocal recurrent selection (RRS) with selection within each of the plateaued populations based solely on crossbred performance, (2) a modification of reciprocal recurrent selection (MRRS) with selection within each population based on both purebred and crossbred performance, and (3) purebred selection within a new synthetic population formed by crossing the two plateaued populations.--Conflicting estimates were obtained for heritability of purebred egg number in each of the plateaued populations. The realized heritability values and estimates from diallel analyses indicated an absence of additive genetic variation for both populations; however, estimates from conventional intraclass correlation methods were positive. The diallel analyses revealed significant amounts of nonadditive gene effects for purebred egg number in each population, while the significant gene effects for crossbred egg numbers were additive. Estimates of the genetic correlation between purebred and crossbred egg number were negative (-0.85 +/- 0.68 and -0.32 +/- 0.25) for the two base populations.--All three alternatives to continued purebred selection gave significant responses, with the average gain per generation from MRRS being significantly superior to the other two methods. Observed purebred and crossbred responses under RRS were in agreement with quantitative genetic theory. Such was not the case for MRRS, which suggested the possibility of major gene segregation.--Evidence supporting a negative genetic correlation between purebred and crossbred performance and the possibility of overdominance is presented and discussed.  相似文献   

9.
The breeding scheme of a Swiss sire line was modeled to compare different target traits and information sources for selection against boar taint. The impact of selection against boar taint on production traits was assessed for different economic weights of boar taint compounds. Genetic gain and breeding costs were evaluated using ZPlan+, a software based on selection index theory, gene flow method and economic modeling. Scenario I reflected the currently practiced breeding strategy as a reference scenario without selection against boar taint. Scenario II incorporated selection against the chemical compounds of boar taint, androstenone (AND), skatole (SKA) and indole (IND) with economic weights of −2.74, −1.69 and −0.99 Euro per unit of the log transformed trait, respectively. As information sources, biopsy-based performance testing of live boars (BPT) was compared with genomic selection (GS) and a combination of both. Scenario III included selection against the subjectively assessed human nose score (HNS) of boar taint. Information sources were either station testing of full and half sibs of the selection candidate or GS against HNS of boar taint compounds. In scenario I, annual genetic gain of log-transformed AND (SKA; IND) was 0.06 (0.09; 0.02) Euro, which was because of favorable genetic correlations with lean meat percentage and meat surface. In scenario II, genetic gain increased to 0.28 (0.20; 0.09) Euro per year when conducting BPT. Compared with BPT, genetic gain was smaller with GS. A combination of BPT and GS only marginally increased annual genetic gain, whereas variable costs per selection candidate augmented from 230 Euro (BPT) to 330 Euro (GS) or 380 Euro (both). The potential of GS was found to be higher when selecting against HNS, which has a low heritability. Annual genetic gain from GS was higher than from station testing of 4 full sibs and 76 half sibs with one or two measurements. The most effective strategy to reduce HNS was selecting against chemical compounds by conducting BPT. Because of heritabilities higher than 0.45 for AND, SKA and IND and high genetic correlations to HNS, the (correlated) response in units of the trait could be increased by 62% compared with scenario III with GS and even by 79% compared with scenario III, with station testing of siblings with two measurements. Increasing the economic weights of boar taint compounds amplified negative effects on average daily gain, drip loss and intramuscular fat percentage.  相似文献   

10.
Genetic improvement in production efficiency traits can also drive reduction in greenhouse gas emissions. This study used international ‘best-practice’ methodology to quantify the improvements in system-wide CO2 equivalent emissions per unit of genetic progress in the Irish Maternal Replacement (MR) and Terminal (T) beef cattle indexes. Effects of each index trait on system gross emissions (GE) and system emissions intensity (EI) were modelled by estimating effects of trait changes on per-animal feed consumption and associated methane production, per-animal meat production and numbers of animals in the system. Trait responses to index selection were predicted from linear regression of individual bull estimated breeding values for each index trait on their MR or T index value, and the resulting regression coefficients were used to calculate trait-wise responses in GE and EI from index selection. Summed over all trait responses, the MR index was predicted to reduce system GE by 0.810 kg CO2e/breeding cow per year per € index and system EI by 0.009 kg CO2e/kg meat per breeding cow per year per € index. These reductions were mainly driven by improvements in cow survival, reduced mature cow maintenance feed requirements, shorter calving interval and reduced offspring mortality. The T index was predicted to reduce system EI by 0.021 kg CO2e/kg meat per breeding cow per year per € index, driven by increased meat production from improvements in carcass weight, conformation and fat. Implications for incorporating an EI reduction index to the current production indexes and long-term projections for national breeding programs are discussed.  相似文献   

11.
Two experiments were conducted to measure milk yield as a correlated response to selection for increased 12-day litter weight (maternal lines) for 13 generations and increased and decreased body weight gain from 21 to 42 days of age (postweaning gain lines) for 12 to 14 generations. Milk yield was measured from day 6 to day 21 of lactation by separating litters from their dams for 6 h, then weighing litters before and after a 1.5 h suckling period. Average total milk production was 30.3 +/- 0.9 g and 28.6 +/- 1.1 g in maternal and control lines, respectively. This difference was not significant (P greater than 0.05). Differences among gain lines were significant (P less than 0.01) in the second experiment with average production of 44.1 +/- 1.4 g for increased gain lines, 22.5 +/- 0.9 g for the decreased gain line and 31.2 +/- 1.0 g for the control. These results indicated that response to selection for increased 12-day litter weight was not associated with increases in milk yield, but sizable changes inmilk yield accompanied bi-directional selection for early postweaning gain.  相似文献   

12.
A method that predicts the genetic composition and inbreeding (F) of the future dairy cow population using information on the current cow population, semen use and progeny test bulls is described. This is combined with information on genetic merit of bulls to compare bull selection methods that minimise F and maximise breeding value for profit (called APR in Australia). The genetic composition of the future cow population of Australian Holstein-Friesian (HF) and Jersey up to 6 years into the future was predicted. F in Australian HF and Jersey breeds is likely to increase by about 0.002 and 0.003 per year between 2002 and 2008, respectively. A comparison of bull selection methods showed that a method that selects the best bull from all available bulls for each current or future cow, based on its calf''s APR minus F depression, is better than bull selection methods based on APR alone, APR adjusted for mean F of prospective progeny after random mating and mean APR adjusted for the relationship between the selected bulls. This method reduced F of prospective progeny by about a third to a half compared to the other methods when bulls are mated to current and future cows that will be available 5 to 6 years from now. The method also reduced the relationship between the bulls selected to nearly the same extent as the method that is aimed at maximising genetic gain adjusted for the relationship between bulls. The method achieves this because cows with different pedigree exist in the population and the method selects relatively unrelated bulls to mate to these different cows. Selecting the best bull for each current or future cow so that the calf''s genetic merit minus F depression is maximised can slow the rate of increase in F in the population.  相似文献   

13.
Veerkamp RF  Beerda B 《Theriogenology》2007,68(Z1):S266-S273
Improving dairy cow fertility by means of genetic selection is likely to become increasingly important, since it is now well established that declining fertility cannot only be arrested by improved management. Profit margins per kg milk produced are decreasing, therefore farmers need to reduce cost and increase herd size. This restricts the labor input per cow and the disposable cost of getting a cow pregnant, whilst at the same time hormone treatments have become less acceptable. This makes it unlikely that additional management interventions will maintain fertility at acceptable levels in the near future. Genetic improvement seems the obvious solution. Effective selection tools are available in most Western countries using traditional breeding value estimation procedures. Also, in addition to gene assisted selection using individual genes or QTL, high throughput Single Nucleotide Polymorphism (SNP) technology allows genetic improvement of fertility based on information from the whole genome (tens of thousands SNP per animal), i.e. genomic selection. Simulation studies have shown that genomic selection improves the accuracy of selecting juvenile animals compared with traditional breeding methods and compared with selection using information from a few genes or QTL only. Research in the areas genomics and proteomics promise to make genetic selection even more effective. The genomic and proteomics technologies combined with the bioinformatics tools that support the interpretation of gene functioning and protein expression facilitate an exciting starting point for the development of new management strategies and tools for the improvement of reproductive performance.  相似文献   

14.
Genetic diversity among 42 Indian elite rice varieties, which is important for selection of parents for conventional breeding and hybrid program, was evaluated using three different types of DNA markers and parentage analysis. Random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and sequence tagged microsatellite site (STMS) markers resulted in mean heterozygosity values of 0.429, 0.675 and 0.882 over all loci, respectively, and marker index values of 2.21, 4.05 and 5.49, respectively. The three molecular marker systems together provide wider genome coverage and, therefore, would be a better indicator of the genetic relationships among the 42 elite rice cultivars than those revealed using individual molecular markers. A total of 153 bands (91%) were polymorphic out of 168 bands amplified, considering all the markers together. The average genetic similarity coefficient across all the 861 cultivar pairs was 0.70 while the average coefficient of parentage was 0.10. Cluster analysis revealed that there was a very poor correlation (correlation coefficient <0.1) between dendrograms generated using coefficients of parentage and molecular marker generated genetic similarities, which can be attributed to selection pressure, genetic drift, sampling of loci and unknown relationships among supposedly unrelated ancestors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Genomic selection relaxes the requirement of traditional selection tools to have phenotypic measurements on close relatives of all selection candidates. This opens up possibilities to select for traits that are difficult or expensive to measure. The objectives of this paper were to predict accuracy of and response to genomic selection for a new trait, considering that only a cow reference population of moderate size was available for the new trait, and that selection simultaneously targeted an index and this new trait. Accuracy for and response to selection were deterministically evaluated for three different breeding goals. Single trait selection for the new trait based only on a limited cow reference population of up to 10 000 cows, showed that maximum genetic responses of 0.20 and 0.28 genetic standard deviation (s.d.) per year can be achieved for traits with a heritability of 0.05 and 0.30, respectively. Adding information from the index based on a reference population of 5000 bulls, and assuming a genetic correlation of 0.5, increased genetic response for both heritability levels by up to 0.14 genetic s.d. per year. The scenario with simultaneous selection for the new trait and the index, yielded a substantially lower response for the new trait, especially when the genetic correlation with the index was negative. Despite the lower response for the index, whenever the new trait had considerable economic value, including the cow reference population considerably improved the genetic response for the new trait. For scenarios with a zero or negative genetic correlation with the index and equal economic value for the index and the new trait, a reference population of 2000 cows increased genetic response for the new trait with at least 0.10 and 0.20 genetic s.d. per year, for heritability levels of 0.05 and 0.30, respectively. We conclude that for new traits with a very small or positive genetic correlation with the index, and a high positive economic value, considerable genetic response can already be achieved based on a cow reference population with only 2000 records, even when the reliability of individual genomic breeding values is much lower than currently accepted in dairy cattle breeding programs. New traits may generally have a negative genetic correlation with the index and a small positive economic value. For such new traits, cow reference populations of at least 10 000 cows may be required to achieve acceptable levels of genetic response for the new trait and for the whole breeding goal.  相似文献   

16.
Quantitative genetic analysis was performed on 10,919 data records collected over three generations from the selection programme for increased body weight at harvest in red tilapia (Oreochromis spp.). They were offspring of 224 sires and 226 dams (50 sires and 60 dams per generation, on average). Linear mixed models were used to analyse body traits (weight, length, width and depth), whereas threshold generalised models assuming probit distribution were employed to examine genetic inheritance of survival rate, sexual maturity and body colour. The estimates of heritability for traits studied (body weight, standard length, body width, body depth, body colour, early sexual maturation and survival) across statistical models were moderate to high (0.13–0.45). Genetic correlations among body traits and survival were high and positive (0.68–0.96). Body length and width exhibited negative genetic correlations with body colour (? 0.47 to ? 0.25). Sexual maturity was genetically correlated positively with measurements of body traits (weight and length). Direct and correlated genetic responses to selection were measured as estimated breeding values in each generation and expressed in genetic standard deviation units (σG). The cumulative improvement achieved for harvest body weight was 1.72 σG after three generations or 12.5% per generation when the gain was expressed as a percentage of the base population. Selection for improved body weight also resulted in correlated increase in other body traits (length, width and depth) and survival rate (ranging from 0.25 to 0.81 genetic standard deviation units). Avoidance of black spot parent matings also improved the overall red colour of the selected population. It is concluded that the selective breeding programme for red tilapia has succeeded in achieving significant genetic improvement for a range of commercially important traits in this species, and the large genetic variation in body colour and survival also shows that there are prospects for future improvement of these traits in this population of red tilapia.  相似文献   

17.
Selection programmes based on prion protein (PrP) genotypes are being implemented for increasing resistance to scrapie. Commercial meat sheep populations participating in sire-referencing schemes were simulated to investigate the effect of selection on PrP genotypes on ARR and VRQ allele frequencies, inbreeding and genetic gain in a performance trait under selection. PrP selection strategies modelled included selection against the VRQ allele and in favour of the ARR allele. Assuming realistic initial PrP frequencies, selection against the VRQ allele had a minimal impact on performance and inbreeding. However, when selection was also in favour of the ARR allele and the frequency of this allele was relatively low, there was a loss of up to three to four years of genetic gain over the 15 years of selection. Most loss in gain occurred during the first five years. In general, the rate of inbreeding was reduced when applying PrP selection. Since animals were first selected on their PrP genotype before being selected on the performance trait, the intensity of selection on performance was weaker under PrP selection (compared with no PrP selection). Eradication of the VRQ allele or fixation of the ARR allele within 15 years of selection was possible only with PrP selection targeting all breeding animals.  相似文献   

18.
In this note, a procedure to partition the genetic trend of a selected population is presented. Each part of the genetic gain accounts for the Mendelian sampling terms of different groups of animals, which can be sometimes assigned to different selection policies. The method is based on a simple transformation of the predicted breeding values. The procedure was illustrated with two simulated examples. In the first example, the genetic trend is partitioned into two pieces, one coming from the selection on sires and the other coming from the selection on dams. The second example shows how the impact of an artificial insemination center in the genetic gain of the whole population can be evaluated.  相似文献   

19.
Molecular studies of parentage have been extremely influential in the study of sexual selection in the last decade, but a consensus statistical method for the characterization of genetic mating systems has not yet emerged. Here we study the utility of alternative mating system measures by experimentally altering the intensity of sexual selection in laboratory-based breeding populations of the rough-skinned newt. Our experiment involved skewed sex ratio (high sexual selection) and even sex ratio (low sexual selection) treatments, and we assessed the mating system by assigning parentage with microsatellite markers. Our results show that mating system measures based on Bateman's principles accurately reflect the intensity of sexual selection. One key component of this way of quantifying mating systems is the Bateman gradient, which is currently underutilized in the study of genetic mating systems. We also compare inferences based on Bateman's principles with those obtained using two other mating system measures that have been advocated recently (Morisita's index and the index of resource monopolization), and our results produce no justification for the use of these alternative measures. Overall, our results show that Bateman's principles provide the best available method for the statistical characterization of mating systems in nature.  相似文献   

20.
A simple one-way cannula technique for non-surgical recovery of bovine embryos has been described. The collector was very reliable, stable, and easy to use. It could be guided through cervix and without damage to the genital tract into both uterine horns on all attempts. Ninety-six per cent (96%) of the flushing medium was recovered. Bleeding occurred rarely. The post-flushing reproductive performance was satisfactory. An average of 4.1 eggs per dairy cow were recovered yielding a recovery rate of 46%. The method was performed under farm conditions with and without the use of a chute or stanchion. Several general practitioners have used the method with success after a brief training period. Good manipulative skills were a prerequisite for good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号