首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
Human intestinal epithelial cells secrete an array of chemokines known to signal the trafficking of neutrophils and monocytes important in innate mucosal immunity. We hypothesized that intestinal epithelium may also have the capacity to play a role in signaling host adaptive immunity. The CC chemokine macrophage inflammatory protein (MIP)-3alpha/CCL20 is chemotactic for immature dendritic cells and CD45RO(+) T cells that are important components of the host adaptive immune system. In these studies, we demonstrate the widespread production and regulated expression of MIP-3alpha by human intestinal epithelium. Several intestinal epithelial cell lines were shown to constitutively express MIP-3alpha mRNA. Moreover, MIP-3alpha mRNA expression and protein production were upregulated by stimulation of intestinal epithelial cells with the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-1alpha or in response to infection with the enteric bacterial pathogens Salmonella or enteroinvasive Escherichia coli. In addition, MIP-3alpha was shown to function as a nuclear factor-kappaB target gene. In vitro findings were paralleled in vivo by increased expression of MIP-3alpha in the epithelium of cytokine-stimulated or bacteria-infected human intestinal xenografts and in the epithelium of inflamed human colon. Mucosal T cells, other mucosal mononuclear cells, and intestinal epithelial cells expressed CCR6, the cognate receptor for MIP-3alpha. The constitutive and regulated expression of MIP-3alpha by human intestinal epithelium is consistent with a role for epithelial cell-produced MIP-3alpha in modulating mucosal adaptive immune responses.  相似文献   

2.
Summary With the marker of Paneth cells-lysozyme, secretory component (SC) immunoreactivity was demonstrated exclusively in Paneth cells of rat small intestine. The other types of epithelial cells (columnar, goblet, endocrine) were negative. On electron microscopic level, many SC-positive colloidal gold particles were found in rough endoplasmic reticulum, Golgi complexes, basal membrane and secretory granules of Paneth cells. These results suggest that SC is not a component of ingested immune complex, but a membrane receptor on Paneth cell. It may function as receptor for polymeric IgA and mediate its transport across the mucosal epithelium. Thus, Paneth cells are responsible for SC synthesis and participate in IgA-mediated acquired immunity in rat small intestine.  相似文献   

3.
4.
CD74 is known as the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) that regulates the cell biology and functions of MHC class II molecules. Class II MHC and Ii expression was believed to be restricted to classical antigen-presenting cells (APC); however, during inflammation, other cell types, including mucosal epithelial cells, have also been reported to express class II MHC molecules. Given the importance of Ii in the biology of class II MHC, we sought to examine the expression of Ii by gastric epithelial cells (GEC) to determine whether class II MHC molecules in these nonconventional APC cells were under the control of Ii and to further support the role that these cells may play in local immune and inflammatory responses during Helicobacter pylori infection. Thus we examined the expression of Ii on GEC from human biopsy samples and then confirmed this observation using independent methods on several GEC lines. The mRNA for Ii was detected by RT-PCR, and the various protein isoforms were also detected. Interestingly, these cells have a high level expression of surface Ii, which is polarized to the apical surface. These studies are the first to demonstrate the constitutive expression of Ii by human GEC.  相似文献   

5.
Wehkamp J  Chu H  Shen B  Feathers RW  Kays RJ  Lee SK  Bevins CL 《FEBS letters》2006,580(22):5344-5350
Antimicrobial peptides and proteins are key effectors of innate immunity, expressed both by circulating phagocytic cells and by epithelial cells of mucosal tissues. In the human small intestine, Paneth cells are secretory epithelial cells that express the antimicrobials human alpha-defensin-5 (HD5), HD6, lysozyme and secretory phospholipase A(2) (sPLA(2)), and recent studies have implicated reduced HD5 and HD6 expression levels in the pathogenesis of ileal Crohn's disease. However, expression levels of these molecules have not been determined routinely by techniques that readily permit quantitative comparisons of their distribution between tissues and samples. Using quantitative real-time PCR with external standards and Northern blot analysis, we compared expression levels of mRNA encoding these four Paneth cell antimicrobial peptides, as well as circulating human neutrophil defensins in several different gastrointestinal tissues and the bone marrow. HD5 and HD6 were the most abundant antimicrobials expressed in the small intestine. The concentration of HD5 mRNA is approximately 5 x 10(5) copies per 10ng RNA in the jejunum and ileum; HD6 mRNA levels were about six times lower than those of HD5. With the exception of low levels in the pancreas (10(3) copies/10 ng RNA), the expression of HD5 and HD6 in tissues other than small intestine was at or below detectable limits. The expression of sPLA2 and lysozyme mRNA was observed in the small intestine (approximately, 3 x 10(3) and 9 x 10(3) copies/10 ng RNA, respectively), but also in several other tissues. Lysozyme expression was high in the duodenum (10(5) copies/10 ng RNA), and the protein localized to both Brunner's glands in the lamina propria and Paneth cells. By comparison, the hematopoietic alpha-defensins HNP1-3 mRNA were detected at 6 x 10(5) copies per 10 ng RNA in the bone marrow. These quantitative RT-PCR data from healthy tissues represents the first quantitative topographical assessment of antimicrobial expression in the gastrointestinal tract and provides a means to directly compare expression levels between healthy tissues and disease specimens for multiple antimicrobial peptides.  相似文献   

6.
7.
8.
9.
Several studies have suggested a positive correlation between heat shock protein (hsp) expression and tumor immunogenicity. Independently, many studies have shown that hsp purified from tumors can be used as a tumor-specific vaccine. In this study, we have explored the connection between hsp expression and anti-tumor immunity by transducing murine CT26 colon carcinoma cells with the cDNA of a major hsp, i.e. hsp110. We have shown that over-expression of hsp110 has no effect on CT26 tumor cell growth in vitro, and does not inhibit their anchorage-independent growth capacity. However, in situ, hsp110 over-expressing CT26 tumor (CT26-hsp110) grew at a significantly reduced rate as compared to the wild-type CT26 tumor in immunocompetent mice. Moreover, immunization of mice with inactivated CT26-hsp110 cells significantly inhibited the growth of wild-type CT26 tumor. This immunity was associated with an increased frequency of tumor-specific T cells after vaccination. An in vivo antibody depletion assay demonstrated that inactivated CT26-hsp110 cells elicited anti-tumor responses involving CD8(+) T cells and natural killer (NK) cells, but not CD4(+) T cells. Lastly, the effect of the addition of granulocyte-macrophage colony stimulating factor (GM-CSF) to these vaccine formulations was determined. Mice immunized with irradiated CT26-hsp110 cells combined with GM-CSF-producing bystander cells revealed a complete inhibition of CT26 tumor growth, indicating a synergy between inactivated CT26-hsp110 vaccine activity and GM-CSF. These observations demonstrate that manipulation of hsp110 expression in tumors, specifically when combined with GM-CSF, represents a potentially powerful approach to cancer vaccine formulation.  相似文献   

10.
11.
12.
Respiratory virus infections have been suggested to be predisposing factors for meningococcal disease. Respiratory syncytial virus (RSV) affects young children in the age range at greatest risk of disease caused by Neisseria meningitidis. It has been previously shown that glycoprotein G expressed on the surface of RSV-infected HEp-2 cells (a human epithelial cell line) contributed to higher levels of binding of meningococci compared with uninfected cells. The aim of the present study was to examine the effect of RSV infection on expression of surface molecules native to HEp-2 cells and their role in bacterial binding. Flow cytometry and fluorescence microscopy were used to assess bacterial binding and expression of host cell antigens. Some molecules analysed in this study have not been reported previously on epithelial cells. RSV infection significantly enhanced the expression of CD15 (P < 0.05), CD14 (P < 0.001) and CD18 (P < 0.01), and the latter two contributed to increased binding of meningococci to cells but not the Gram-positive Streptococcus pneumoniae.  相似文献   

13.
Immune cells are known to express specific recognition molecules for cell surface glycans. However, mechanisms involved in glycan-mediated cell-cell interactions in mucosal immunity have largely been left unaccounted for. We found that several glycans preferentially expressed in nonmalignant colonic epithelial cells serve as ligands for sialic acid-binding Ig-like lectins (siglecs), the immunosuppressive carbohydrate-recognition receptors carried by immune cells. The siglec ligand glycans in normal colonic epithelial cells included disialyl Lewis(a), which was found to have binding activity to both siglec-7 and -9, and sialyl 6-sulfo Lewis(x), which exhibited significant binding to siglec-7. Expression of these siglec-7/-9 ligands was impaired upon carcinogenesis, and they were replaced by cancer-associated glycans sialyl Lewis(a) and sialyl Lewis(x), which have no siglec ligand activity. When we characterized immune cells expressing siglecs in colonic lamina propriae by flow cytometry and confocal microscopy, the majority of colonic stromal immune cells expressing siglec-7/-9 turned out to be resident macrophages characterized by low expression of CD14/CD89 and high expression of CD68/CD163. A minor subpopulation of CD8(+) T lymphocytes also expressed siglec-7/-9. Siglec-7/-9 ligation suppressed LPS-induced cyclooxygenase-2 expression and PGE(2) production by macrophages. These results suggest that normal glycans of epithelial cells exert a suppressive effect on cyclooxygenase-2 expression by resident macrophages, thus maintaining immunological homeostasis in colonic mucosal membranes. Our results also imply that loss of immunosuppressive glycans by impaired glycosylation during colonic carcinogenesis enhances inflammatory mediator production.  相似文献   

14.
Chemokines are key mediators of leukocyte recruitment during pathogenic insult and also play a prominent role in homeostasis. While most chemokine receptors bind to multiple chemokines, CCR6 is unique in that this receptor is one of only a few that can bind only a single chemokine ligand, CCL20. CCR6 is an important receptor that is involved in regulating several aspects of mucosal immunity, including the ability to mediate the recruitment of immature dendritic cells (DCs) and mature DCs, and professional antigen presenting cells (APCs) to the sites of epithelial inflammation. Further, CCR6 mediates the homing of both CD4+ T (T-helper; Th) cells and DCs to the gut mucosal lymphoid tissue. DCs, which are known to be essential immune cells in innate immunity and in the initiation of adaptive immunity, play a central role in initiating a primary immune response. Herein, we summarize the role of CCR6 in immune responses at epithelial and mucosal sites in both the lung and gut based on a review of the current literature.  相似文献   

15.
16.
Innate immunity plays an important role in pulmonary host defense against Pneumocystis carinii, an important pathogen in individuals with impaired cell-mediated immunity. We investigated the role of GM-CSF in host defense in a model of P. carinii pneumonia induced by intratracheal inoculation of CD4-depleted mice. Lung GM-CSF levels increased progressively during the infection and were significantly greater than those in uninfected controls 3, 4, and 5 wk after inoculation. When GM-CSF gene-targeted mice (GM-/-) depleted of CD4+ cells were inoculated with P. carinii, the intensities of infection and inflammation were increased significantly compared with those in CD4-depleted wild-type mice. In contrast, transgenic expression of GM-CSF directed solely in the lungs of GM-/- mice (using the surfactant protein C promoter) dramatically decreased the intensity of infection and inflammation 4 wk after inoculation. The concentrations of surfactant proteins A and D were greater in both uninfected and infected GM-/- mice compared with those in wild-type controls, suggesting that this component of the innate response was preserved in the GM-/- mice. However, alveolar macrophages (AM) from GM-/- mice demonstrated impaired phagocytosis of purified murine P. carinii organisms in vitro compared with AM from wild-type mice. Similarly, AM production of TNF-alpha in response to P. carinii in vitro was totally absent in AM from GM-/- mice, while GM-CSF-replete mice produced abundant TNF in this setting. Thus, GM-CSF plays a critical role in the inflammatory response to P. carinii in the setting of impaired cell-mediated immunity through effects on AM activation.  相似文献   

17.
RANTES potentiates antigen-specific mucosal immune responses   总被引:8,自引:0,他引:8  
RANTES is produced by lymphoid and epithelial cells of the mucosa in response to various external stimuli and is chemotactic for lymphocytes. The role of RANTES in adaptive mucosal immunity has not been studied. To better elucidate the role of this chemokine, we have characterized the effects of RANTES on mucosal and systemic immune responses to nasally coadministered OVA. RANTES enhanced Ag-specific serum Ab responses, inducing predominately anti-OVA IgG2a and IgG3 followed by IgG1 and IgG2b subclass Ab responses. RANTES also increased Ag-specific Ab titers in mucosal secretions and these Ab responses were associated with increased numbers of Ab-forming cells, derived from mucosal and systemic compartments. Splenic and mucosally derived CD4(+) T cells of RANTES-treated mice displayed higher Ag-specific proliferative responses and IFN-gamma, IL-2, IL-5, and IL-6 production than control groups receiving OVA alone. In vitro, RANTES up-regulated the expression of CD28, CD40 ligand, and IL-12R by Ag-activated primary T cells from DO11.10 (OVA-specific TCR-transgenic) mice and by resting T cells in a dose-dependent fashion. These studies suggest that RANTES can enhance mucosal and systemic humoral Ab responses through help provided by Th1- and select Th2-type cytokines as well as through the induction of costimulatory molecule and cytokine receptor expression on T lymphocytes. These effects could serve as a link between the initial innate signals of the host and the adaptive immune system.  相似文献   

18.
The CD69 glycoprotein is an early activation antigen of T and B lymphocytes but it expression is induced in vitro on cells of most hematopoietic lineages, including neutrophils after stimulation with PMA or fMLP. In this study, we investigated whether CD69 expression on human neutrophils could be modulated by inflammatory or anti-inflammatory cytokines (IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, G-CSF, GM-CSF, TNF-alpha, TGF-beta, IFN-alpha, IFN-gamma). Resting neutrophils from healthy subjects did not express CD69 on the cell surface; moreover, a preformed intracellular pool of CD69 was not evident in these cells. CD69 was barely detectable on these cells after overnight incubation in medium while overnight incubation with GM-CSF, IFN-gamma or IFN-alpha significantly induced CD69 expression on neutrophils with GM-CSF appearing to be the most potent inducer. This induction was dependent on a new protein synthesis as it was significantly inhibited by cycloheximide (about 50% inhibition). CD69 cross-linking on GM-CSF-primed neutrophils sinergized with LPS and increased TNF-alpha production and secretion suggesting a role for CD69-positive neutrophils in the pathogenesis and maintenance of different inflammatory diseases.  相似文献   

19.
Bronchial epithelial cells represent the first line of defense against invading airborne pathogens. They are important contributors to innate mucosal immunity and provide a variety of antimicrobial effectors. However, mucosal surfaces are prone to contact with pathogenic, as well as nonpathogenic microbes, and therefore, immune recognition principles have to be tightly controlled to avoid uncontrolled permanent activation. TLRs have been shown to recognize conserved microbial patterns and to mediate inducible activation of innate immunity. Our experiments demonstrate that bronchial epithelial cells express functional TLR1-6 and TLR9 and thus make use of a common principle of professional innate immune cells. Although it was observed that TLR2 ligands dependent on heterodimeric signaling either with TLR1 or TLR6 were functional, other ligands like lipoteichoic acid were not. Additionally, it was found that bronchial epithelial cells could be stimulated only marginally by Gram-positive bacteria bearing known TLR2 ligands while Gram-negative bacteria were easily recognized. This correlated with low expression of TLR2 and the missing expression of the coreceptor CD36. Transgenic expression of both receptors restored responsiveness to the complete set of TLR2 ligands and Staphylococcus aureus. Additional gene-array experiments confirmed hyporesponsiveness to this bacterium while Pseudomonas aeruginosa and respiratory syncytial virus induced common, as well as pathogen-specific, sets of genes. The findings indicate that bronchial epithelium regulates its sensitivity to recognize microbes by managing receptor expression levels. This could serve the special needs of controlled microbial recognition in mucosal compartments.  相似文献   

20.
We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号