首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The location of Helicobacter pylori in the gastric mucosa of mammals is defined by natural pH gradients within the gastric mucus, which are more alkaline proximal to the mucosal epithelial cells and more acidic toward the lumen. We have used a microscope slide-based pH gradient assay and video data collection system to document pH-tactic behavior. In response to hydrochloric acid (HCl), H. pylori changes its swimming pattern from straight-line random swimming to arcing or circular patterns that move the motile population away from the strong acid. Bacteria in more-alkaline regions did not swim toward the acid, suggesting the pH taxis is a form of negative chemotaxis. To identify the chemoreceptor(s) responsible for the transduction of pH-tactic signals, a vector-free allelic replacement strategy was used to construct mutations in each of the four annotated chemoreceptor genes (tlpA, tlpB, tlpC, and tlpD) in H. pylori strain SS1 and a motile variant of strain KE26695. All deletion mutants were motile and displayed normal chemotaxis in brucella soft agar, but only tlpB mutants were defective for pH taxis. tlpD mutants exhibited more tumbling and arcing swimming, while tlpC mutants were hypermotile and responsive to acid. While tlpA, tlpC, and tlpD mutants colonized mice to near wild-type levels, tlpB mutants were defective for colonization of highly permissive C57BL/6 interleukin-12 (IL-12) (p40-/-)-deficient mice. Complementation of the tlpB mutant (tlpB expressed from the rdxA locus) restored pH taxis and infectivity for mice. pH taxis, like motility and urease activity, is essential for colonization and persistence in the gastric mucosa, and thus TlpB function might represent a novel target in the development of therapeutics that blind tactic behavior.  相似文献   

3.
Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for several reasons: its molecular weight is similar to the molecular weights of Escherichia coli methyl-accepting chemotaxis proteins, the amount of time required to attain maximal methylation correlated with the time needed for behavioral adaptation of P. putida cells to benzoate, and methylation was stimulated by benzoate only in cells induced for chemotaxis to benzoate. Also, a mutant specifically defective in benzoate taxis failed to show any stimulation of methylation upon addition of benzoate. Benzoylformate did not stimulate protein methylation in cells induced for benzoylformate chemotaxis, suggesting that sensory input from this second group of aromatic-acid attractants is processed through a different kind of chemosensory pathway. The chemotactic responses of P. putida cells to benzoate and benzoylformate were not sensitive to external pH over a range (6.2 to 7.7) which would vary the protonated forms of these weak acids by a factor of about 30. This indicates that detection of cytoplasmic pH is not the basis for aromatic-acid taxis in P. putida.  相似文献   

4.
Weak acids such as acetate and benzoate, which partially collapse the transmembrane proton gradient, not only mediate pH taxis but also impair the motility of Escherichia coli and Salmonella at an external pH of 5.5. In this study, we examined in more detail the effect of weak acids on motility at various external pH values. A change of external pH over the range 5.0 to 7.8 hardly affected the swimming speed of E. coli cells in the absence of 34 mM potassium acetate. In contrast, the cells decreased their swimming speed significantly as external pH was shifted from pH 7.0 to 5.0 in the presence of 34 mM acetate. The total proton motive force of E. coli cells was not changed greatly by the presence of acetate. We measured the rotational rate of tethered E. coli cells as a function of external pH. Rotational speed decreased rapidly as the external pH was decreased, and at pH 5.0, the motor stopped completely. When the external pH was returned to 7.0, the motor restarted rotating at almost its original level, indicating that high intracellular proton (H+) concentration does not irreversibly abolish flagellar motor function. Both the swimming speeds and rotation rates of tethered cells of Salmonella also decreased considerably when the external pH was shifted from pH 7.0 to 5.5 in the presence of 20 mM benzoate. We propose that the increase in the intracellular proton concentration interferes with the release of protons from the torque-generating units, resulting in slowing or stopping of the motors.  相似文献   

5.
A Bacillus subtilis open reading frame (ORF) encoding a predicted polypeptide of 156 amino acids was subcloned and sequenced. The polypeptide was found to be homologous to CheW of Escherichia coli, sharing 28.6% amino acid identity. The ORF was verified by using a bacteriophage T7 expression system in E. coli. The gene was inactivated by insertion of a nonpolor chloramphenicol acetyltransferase cassette in its N-terminal region. In the absence of chemoeffectors, the mutant displayed a smooth swimming bias, with some tumbling. The CheW- mutant was defective on swarm plates but was complemented by a plasmid that expressed wild type CheW. Addition of attractant or repellent to the CheW- mutant resulted in transient smooth swimming or tumbling, respectively. However, capillary assays revealed that chemotaxis was substantially impaired in the mutant strain.  相似文献   

6.
When bacterial cells are tethered to glass by their flagella, many of them spin. On the basis of experiments with tethered cells it has generally been thought that the motor which drives the flagellum is a two-state device, existing in either a counterclockwise or a clockwise state. Here we show that a third state of the motor is that of pausing, the duration and frequency of which are affected by chemotactic stimuli. We have recorded on video tape the rotation of tethered Escherichia coli and Salmonella typhimurium cells and analyzed the recordings frame by frame and in slow motion. Most wild-type cells paused intermittently. The addition of repellents caused an increase in the frequency and duration of the pauses. The addition of attractants sharply reduced the number of pauses. A chemotaxis mutant which lacks a large part of the chemotaxis machinery owing to a deletion of the genes from cheA to cheZ did not pause at all and did not respond to repellents by pausing. A tumbly mutant of S. typhimurium responded to repellents by smooth swimming and to attractants by tumbling. When tethered, these cells exhibited a normal rotational response but an inverse pausing response to chemotactic stimuli: the frequency of pauses decreased in response to repellents and increased in response to attractants. It is suggested that (i) pausing is an integral part of bacterial motility and chemotaxis, (ii) pausing is independent of the direction of flagellar rotation, and (iii) pausing may be one of the causes of tumbling.  相似文献   

7.
The relationships between the level of tumbling, tumble frequency, and chemotactic ability were tested by constructing two Escherichia coli strains with the same signaling apparatus but with different adapted levels of tumbling, above and below the level of wild-type E. coli. This was achieved by introducing two different aspartate receptor genes into E. coli: a wild-type (wt-tars) and a mutant (m-tars) Salmonella typhimurium receptor gene. These cells were compared with each other and with wild-type E. coli (containing the wild-type E. coli aspartate receptor gene, wt-tare). It was found that in spite of the differences in the adapted levels of tumbling, the three strains had essentially equal response times and chemotactic ability toward aspartate. This shows that the absolute level of the tumbling can be varied without impairing chemotaxis if the signal processing system is normal. It also appears that a largely smooth-swimming mutant may undergo chemotaxis by increasing tumbling frequency in negative gradients.  相似文献   

8.
The Bacillus subtilis gene encoding FliY has been cloned and sequenced. The gene encodes a 379-amino-acid protein with a predicted molecular mass of 41,054 daltons. FliY is partly homologous to the Escherichia coli and Salmonella typhimurium switch proteins FliM and FliN. The N-terminus of FliY has 33% identity with the first 122 amino acids of FliM, whereas the C-terminus of FliY has 52% identity with the last 30 amino acids of FliN. The middle 60% of FliY is not significantly homologous to either of the proteins. A fliY::cat null mutant has no flagella. Motility can be restored to the mutant by expression of fliY from a plasmid, although chemotaxis is still defective since the strain exhibits smooth swimming behaviour. fliY::cat is in the cheD complementation group. One of the cheD point mutants does not switch although the population grown from a single cell has both smooth swimming and tumbling bacteria, implying that the switch is locked. Expression of fliY in wild-type B. subtilis makes the cells more smooth-swimming but does not appear to affect chemotaxis. Expression of fliY in wild-type S. typhimurium severely inhibits chemotaxis and also makes the cells smooth swimming. Expression in a non-motile S. typhimurium fliN mutant restores motility but not chemotaxis, although expression in a non-motile E. coli fliM mutant does not restore motility. The homology, multiple phenotypes, and interspecies complementation suggest that FliY forms part of the B. subtilis switch complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Flagella of cytoplasm-free envelopes of Escherichia coli or Salmonella typhimurium can rotate in either the counterclockwise or clockwise direction, but they never switch from one direction of rotation to another. Exogenous fumarate, in the intracellular presence of the chemotaxis protein CheY, restored switching ability to envelopes, with a concomitant increase in clockwise rotation. An increase in clockwise rotation was also observed after fumarate was added to partially lysed cells of E. coli, but the proportion of switching cells remained unchanged.  相似文献   

10.
The flagellar switch of Salmonella typhimurium and Escherichia coli is composed of three proteins, FliG, FliM, and FliN. The switch complex modulates the direction of flagellar motor rotation in response to information about the environment received through the chemotaxis signal transduction pathway. In particular, chemotaxis protein CheY is believed to bind to switch protein FliM, inducing clockwise filament rotation and tumbling. To investigate the function of FliM and its interactions with FliG and FliN, we engineered a series of 34 FliM deletion mutant proteins, each lacking a different 10-amino-acid segment. We have determined the phenotype associated with each mutant protein, the ability of each mutant protein to interfere with the motility of wild-type cells, and the effect of additional FliG and FliN on the function of selected FliM mutant proteins. Overall, deletions at the N terminus produced a counterclockwise switch bias, deletions in the central region of the protein produced poorly motile or nonflagellate cells, and deletions near the C terminus produced only nonflagellate cells. On the basis of this evidence and the results of a previous study of spontaneous FliM mutants (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992), we propose a division of the FliM protein into four functional regions: an N-terminal region primarily involved in switching, an extended N-terminal region involved in switching and assembly, a middle region involved in switching and motor rotation, and a C-terminal region primarily involved in flagellar assembly.  相似文献   

11.
In Escherichia coli and Salmonella typhimurium, ATP is required for chemotaxis and for a normal probability of clockwise rotation of the flagellar motors, in addition to the requirement for S-adenosylmethionine (J. Shioi, R. J. Galloway, M. Niwano, R. E. Chinnock, and B. L. Taylor, J. Biol. Chem. 257:7969-7975, 1982). The site of the ATP requirement was investigated. The times required for S. typhimurium ST23 (hisF) to adapt to a step increase in serine, phenol, or benzoate were similar in cells depleted of ATP and in cells with normal levels of ATP. This established that ATP was not required for the chemotactic signal to cross the inner membrane or for adaptation to the transmembrane signal to occur. Depletion of ATP did not affect the probability of clockwise rotation in E. coli cheYZ scy strains that were defective in the cheY and cheZ genes and had a partially compensating mutation in the motor switch. Strain HCB326 (cheAWRBYZ tar tap tsr trg::Tn10), which was deficient in all chemotaxis components except the switch and motor, was transformed with the pCK63 plasmid (ptac-cheY+). Induction of cheY in the transformant increased the frequency of clockwise rotation, but except at the highest levels of CheY overproduction, clockwise rotation was abolished by depleting ATP. It is proposed that the CheY protein is normally in an inactive form and that ATP is required for formation of an active CheY* protein that binds to the switch on the flagellar motors and initiates clockwise rotation. Depletion of ATP partially inhibits feedback regulation of the cheB product, protein methylesterase, but this may reflect a second site of ATP action in chemotaxis.  相似文献   

12.
Fumarate restores to flagella of cytoplasm-free, CheY- containing envelopes of Escherichia coli and Salmonella typhimurium the ability to switch from one direction of rotation to another. To examine the specificity of this effect, we studied flagellar rotation of envelopes which contained, instead of fumarate, one of its analogues. Malate, maleate and succinate promoted switching, but to a lesser extent than fumarate. These observations were made both with wild-type envelopes and with envelopes of a mutant which lacks the enzymes succinate dehydrogenase and fumarase, indicating that the switching-promoting activity of the analogues was not caused by their conversion to fumarate. Aspartate and lactate did not promote switching. Using strains defective in specific enzymes of the tricarboxylic acid cycle and lacking the cytoplasmic chemotaxis proteins as well as some of the chemo-taxis receptors, we demonstrated that, in intact bacteria, unlike the situation in envelopes, fumarate promoted clockwise rotation via its metabolites acetyl phosphate and acetyladenylate, but did not promote switching (presumably because of the presence of cytoplasmic fumarate). All of the results are consistent with the notion that fumarate acts as a switching factor, presumably by lowering the activation energy of switching. Thus fumarate and some of its metabolites may serve as a connection point between the bacterial metabolic state and chemotactic behaviour.  相似文献   

13.
Asynchronous switching of flagellar motors on a single bacterial cell   总被引:15,自引:0,他引:15  
R M Macnab  D P Han 《Cell》1983,32(1):109-117
Salmonella possesses several flagella, each capable of counterclockwise and clockwise rotation. Counterclockwise rotation produces swimming, clockwise rotation produces tumbling. Switching between senses occurs stochastically. The rotational sense of individual flagella on a single cell could be monitored under special conditions (partially de-energized cells of cheC and cheZ mutants). Switching was totally asynchronous, indicating that the stochastic process operates at the level of the individual organelle. Coordinated rotation in the flagellar bundle during swimming may therefore derive simply from a high counterclockwise probability enhanced by mechanical interactions, and not from a synchronizing switch mechanism. Different flagella on a given cell had different switching probabilities, on a time scale (greater than 2 min) spanning many switching events. This heterogeneity may reflect permanent structural differences, or slow fluctuations in some regulatory process.  相似文献   

14.
The 5 to 10 peritrichously inserted complex flagella of Rhizobium meliloti MVII-1 were found to form right-handed flagellar bundles. Bacteria swam at speeds up to 60 microns/s, their random three-dimensional walk consisting of straight runs and quick directional changes (turns) without the vigorous angular motion (tumbling) seen in swimming Escherichia coli cells. Observations of R. meliloti cells tethered by a single flagellar filament revealed that flagellar rotation was exclusively clockwise, interrupted by very brief stops (shorter than 0.1 s), typically every 1 to 2 s. Swimming bacteria responded to chemotactic stimuli by extending their runs, and tethered bacteria responded by prolonged intervals of clockwise rotation. Moreover, the motility tracks of a generally nonchemotactic ("smooth") mutant consisted of long runs without sharp turns, and tethered mutant cells showed continuous clockwise rotation without detectable stops. These observations suggested that the runs of swimming cells correspond to clockwise flagellar rotation, and the turns correspond to the brief rotation stops. We propose that single rotating flagella (depending on their insertion point on the rod-shaped bacterial surface) can reorient a swimming cell whenever the majority of flagellar motors stop.  相似文献   

15.
Mutant derivatives of Halobacterium halobium previously isolated by using a procedure that selected for defective phototactic response to white light were examined for an array of phenotypic characteristics related to phototaxis and chemotaxis. The properties tested were unstimulated swimming behavior, behaviorial responses to temporal gradients of light and spatial gradients of chemoattractants, content of photoreceptor pigments, methylation of methyl-accepting taxis proteins, and transient increases in rate of release of volatile methyl groups induced by tactic stimulation. Several distinct phenotypes were identified, corresponding to a mutant missing photoreceptors, a mutant defective in the methyltransferase, a mutant altered in control of the methylesterase, and mutants apparently defective in intracellular signaling. All except the photoreceptor mutant were defective in both chemotaxis and phototaxis.  相似文献   

16.
In contrast to the situation in enteric bacteria, chemotaxis in Rhodobacter sphaeroides requires transport and partial metabolism of chemoattractants. A chemotaxis operon has been identified containing homologues of the enteric cheA , cheW , cheR genes and two homologues of the cheY gene. However, mutations in these genes have only minor effects on chemotaxis. In enteric species, CheW transmits sensory information from the chemoreceptors to the histidine protein kinase, CheA. Expression of R. sphaeroides cheW in Escherichia coli showed concentration-dependent inhibition of wild-type behaviour, increasing counter-clockwise rotation and thus smooth swimming — a phenotype also seen when E. coli cheW is overexpressed in E. coli . In contrast, overexpression of R. sphaeroides cheW in wild-type R. sphaeroides inhibited motility completely, the equivalent of inducing tumbly motility in E. coli . Expression of R. sphaeroides cheW in an E. coli Δ cheW chemotaxis mutant complemented this mutation, confirming that CheW is involved in chemosensory signal transduction. However, unlike E. coli Δ cheW mutants, in-frame deletion of R. sphaeroides cheW did not affect either swimming behaviour or chemotaxis to weak organic acids, although the responses to sugars were enhanced. Therefore, although CheW may act as a signal-transduction protein in R. sphaeroides , it may have an unusual role in controlling the rotation of the flagellar motor. Furthermore, the ability of a Δ cheW mutant to swim normally and show wild-type responses to weak acids supports the existence of additional chemosensory signal-transduction pathways.  相似文献   

17.
Specific inhibition of flagellar rotation reversal was observed after exposure of chemotactic Salmonella typhimurium to citrate autoclaved at neutral pH. The presence of a rotation reversal inactivator was established in autoclaved citrate-containing media and nutrient broth. Since modulation of flagellar rotation by attractants and repellents is the basis of chemotactic behavior, a specific inhibitor of rotation reversal, which is essential for tumble generation, provides a useful probe into the molecular mechanism of bacterial chemotaxis. The inactivator inhibits clockwise rotation without affecting counterclockwise rotation, speed of rotation, or the capacity of the cells to grow and divide. Inactivation of clockwise rotation is gradual and irreversible, differing from the transient inhibition of clockwise rotation by attractants, which is characterized by an immediate suppression followed by a return to normal rotation patterns. The rotation reversal inactivator is stable to acidification, rotary evaporation, lyophilization, and rehydration.  相似文献   

18.
Strains of Escherichia coli lacking all cytoplasmic chemotaxis proteins except CheY swim smoothly under most conditions. However, they tumble when exposed to acetate. Acetate coenzyme A synthetase (EC 6.2.1.1) was thought to be essential for this response. New evidence suggests that the tumbling is mediated instead by acetate kinase (EC 2.7.2.1), which might phosphorylate CheY via acetyl phosphate. In strains that were wild type for chemotaxis, neither acetate coenzyme A synthetase, acetate kinase, nor phosphotransacetylase (EC 2.3.1.8) (and thus acetyl phosphate) was required for responses to aspartate, serine, or sugars sensed by the phosphotransferase system. Thus, acetate-induced tumbling does not appear to play an essential role in chemotaxis in wild-type cells.  相似文献   

19.
Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was present to maintain energy production in the absence of glycerol, the increases in membrane potential and chemotactic response upon addition of glycerol were abolished. Methylation of a chemotaxis receptor was not required for positive glycerol chemotaxis in E. coli or S. typhimurium but is involved in the negative chemotaxis of E. coli to high concentrations of glycerol. We propose that positive chemotaxis to glycerol in E. coli and S. typhimurium is an example of energy taxis mediated via a signal transduction pathway that responds to changes in the cellular energy level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号