首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two interleukin-2 receptor (IL-2R) subunits (p55 and p70/75) on human lymphocytes. Induction of the expressions of these IL-2R subunits was examined by the protein kinase-C (PK-C) activator (phorbol myristate acetate, PMA) and the calcium ionophore, ionomycine (IM). IM induced predominantly p70/75 expression on human T and B cells as indicated by the results of chemical crosslinking studies and binding assays. In contrast, PMA induced p55 expression significantly. These results suggest that the calcium-calmodulin and PK-C pathways regulate p70/75 and p55 expressions differently, and indicate that these intracellular signal messengers could control the responsiveness to IL-2, changing the affinity and number of receptors in vivo.  相似文献   

2.
Human recombinant interleukin-2 (IL-2) and a soluble recombinant form of the human p55 (Tac antigen) component of the IL-2 receptor (IL-2R) have been cocrystallized in 1.7-1.8 M ammonium sulfate, in the pH range 7.0-8.2. Variously glycosylated forms of both receptor and ligand can be cocrystallized under those conditions. The best crystals of the putative receptor-ligand complex involve the enzymatically desialylated receptor and unglycosylated IL-2. These crystals belong to the trigonal space group P3(1)2(1) or its enantiomorph, with unit cell dimensions a = b = 91 A and c = 119 A, and diffract to 3.5 A resolution. There is one receptor-ligand complex asymmetric unit, with a Matthews coefficient of 2.7, assuming the presence of one IL-2 molecule-receptor molecule. Interestingly, in addition to IL-2 (Mr = 14,000), the p55 IL-2 receptor (Mr = 44,000) and two fragments of the receptor, of apparent Mr = 35,000 and 25,000, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the crystals are enriched in a reducible dimeric form of the desialylated receptor (apparent Mr = 90,000), as compared with protein solution from which the crystals grow. The overall amino acid content in the crystals is consistent with a 1:1 ratio of receptor to ligand. A native data set has been collected on a multiwire area detector and the search for suitable heavy atom derivatives is in progress.  相似文献   

3.
An IL-4-dependent T cell clone (LD8) was isolated from the murine IL-2-dependent cytotoxic T cell line C30.1. This clone has lost the capacity to proliferate in response to IL-2 after long-term culture in IL-4. LD8 cells express the p70, but not the p55, subunit of the IL-2R on their cell surface. The number of p70 IL-2R molecules on LD8 cells is comparable with the number of high-affinity IL-2R on the parental C30.1 cell line. LD8 cells can efficiently internalize IL-2 through the p70 IL-2R subunit. Following stimulation by IL-2, LD8 cells up-regulate p70 IL-2R mRNA, but do not express p55 IL-2R mRNA. IL-2-dependent proliferation of LD8 cells was reconstituted after introduction and expression of a human p55 IL-2R cDNA. To further investigate the role of p70 IL-2R, we have measured IL-2-induced proliferation of C30.1 cells in the presence of three anti-p55 IL-2R mAb (5A2, PC61, and 7D4) that recognize different epitopes. Under the experimental conditions used, the combination of anti-p55 IL-2R mAb prevents the formation of high-affinity IL-2R, but does not affect the binding of IL-2 to p70 IL-2R or IL-2 internalization. However, these three mAb inhibit proliferation of C30.1 cells even in the presence of IL-2 concentrations sufficient to saturate p70 IL-2R. Together these results demonstrate that p70 IL-2R alone is not sufficient to transmit IL-2-induced growth signals and that formation of p55-p70 IL-2R complex is required for IL-2-dependent proliferation of murine T cells.  相似文献   

4.
To better understand the structural basis for the binding of proteinase-transformed human alpha2-macroglobulin (alpha2M) to its receptor, we have used three-dimensional multinuclear NMR spectroscopy to determine the secondary structure of the receptor binding domain (RBD) of human alpha2M. Assignment of the backbone NMR resonances of RBD was made using 13C/15-N and 15N-enriched RBD expressed in Escherichia coli. The secondary structure of RBD was determined using 1H and 13C chemical shift indices and inter- and intrachain nuclear Overhauser enhancements. The secondary structure consists of eight strands in beta-conformation and one alpha-helix, which together comprise 44% of the protein. The beta-strands form three regions of antiparallel beta-sheet. The two lysines previously identified as being critical for receptor binding are located in (Lys1374), and immediately adjacent to (Lys1370) the alpha-helix, which also contains an (Arg1378). Secondary structure predictions of other alpha-macroglobulins show the conservation of this alpha-helix and suggest an important role for this helix and for basic residues within it for receptor binding.  相似文献   

5.
IL2-PE40 is a chimeric protein composed of human interleukin 2 (IL2) genetically fused to the amino terminus of a modified form of pseudomonas exotoxin (PE). Internalization of IL2 via the individual p55 and p70 subunits of the IL2 receptor was studied using IL2-PE40 on several mouse and human cell lines expressing either the p55, the p70, or both IL2 receptor subunits. Internalization was assessed by measuring inhibition of protein synthesis caused by the toxin moiety of IL2-PE40. The results demonstrate that IL2 internalization is mediated by either the p55 receptor subunit or by the p70 subunit but is much more efficient when high affinity receptors composed of both subunits are present. IL2-PE40 is a powerful reagent for studying IL2 receptor interactions and for analyzing pathways of the immune response and its regulation.  相似文献   

6.
The human interleukin-2 (IL-2) receptor was quantitatively cleaved into two large disulfide-bonded fragments by either trypsin or endoproteinase lys-C (endo lys-C). The smaller fragment contains both N-linked oligosaccharides found in the intact receptor and is derived from the amino terminus of the molecule. The larger proteolytic fragment was metabolically labeled with 32PO4 and represents the carboxy terminus. The predicted cleavage sites of both enzymes lie in the region of the molecule encoded by exon 3. This pattern of limited proteolysis provides biochemical evidence that the extracellular region of the receptor is organized into two domains. This supports a structural model of the receptor in which the regions of internal homology encoded by exons 2 and 4 form independent disulfide-bonded domains connected by a hydrophilic segment. To determine the role of these domains in IL-2 binding, [125I]IL-2 was chemically cross-linked to the proteolytically cleaved receptor on the cell surface. The 125I-labeled complex obtained displayed N-linked oligosaccharides and had an Mr consistent with one molecule of IL-2 cross-linked to the smaller proteolytic fragment of the receptor. Thus, the amino-terminal domain of the IL-2 receptor appears to form an integral part of the IL-2 binding site.  相似文献   

7.
8.
At least two different receptor molecules have been described that are capable of binding tumor necrosis factor alpha, a cytokine that plays an important role in inflammation and antitumor activity. Comparative analyses at the nucleotide sequence level suggest that these receptors are members of a newly defined protein family that also includes human and rat nerve growth factor receptors. In this study, we determine the chromosome assignments of the human TNF alpha receptor genes, one of which may have evolved as part of a conserved Hox locus-containing chromosome segment.  相似文献   

9.
In order to study structure-function relationships of the M(r) 55,000 subunit of the murine IL-2R (p55 IL-2R) by epitope mapping, we have expressed the p55 IL-2R molecule in a cell-free translation system. Under these in vitro conditions, we detected the expected p55 IL-2R polypeptide initiated at Met 1 and, in addition, two internally initiated molecules at Met 64 and Met 105. In this report we describe that from such a mixture, containing three molecular species of p55 IL-2R, mAb 135D5 immunoprecipitated the polypeptide initiated at Met 105 although this N-terminally truncated form of p55 IL-2R does not contain its epitope located between amino acids 72-88. This observation can be taken as a further evidence for the formation of p55 IL-2R dimers. Finally, we identified the region implicated in the formation of p55 IL-2R dimers close to the transmembrane region of the molecule.  相似文献   

10.
The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.  相似文献   

11.
We previously established that Trypanosoma cruzi, the causative agent of Chagas' disease, has the ability to suppress expression of the p55 component of the IL-2R by activated human PBMC. We explored in this work whether the parasite alters the expression of high affinity IL-2R, responsible for the internalization of IL-2 and signal transduction. Radiobinding measurements revealed that the trypanosome indeed inhibited the expression of high affinity IL-2R. Thus, a considerably smaller number of 125I-IL-2 molecules was necessary to saturate the IL-2R on PHA-stimulated PBMC cocultured with T. cruzi than those of control PBMC that had not been exposed to the organisms. Scatchard analysis of equilibrium binding data showed that, in the presence of T. cruzi, the number of high affinity IL-2R per cell was reduced by approximately 80%. The Kd for IL-2 binding to the fewer IL-2R expressed on PBMC exposed to T. cruzi was not significantly different from that of IL-2R on nonsuppressed PBMC. Independent measurements made after cross-linking 125I-IL-2 to its specific receptors with disuccinimidylsuberate showed that both the p55 and p70 components of the IL-2R were markedly suppressed and to comparable extents. These results demonstrate for the first time that T. cruzi suppresses the expression of high affinity IL-2R by human cells, including the p70 chain of the heterodimeric IL-2R. It is noteworthy that the in vitro model system we used in this work to study the mechanisms whereby T. cruzi may induce the immunosuppression that accompanies acute Chagas' disease also lends itself to the exploration of the regulatory mechanisms governing the expression of IL-2R by human PBMC.  相似文献   

12.
R Bujdoso  D Sargan  M Williamson  I McConnell 《Gene》1992,113(2):283-284
A 1.3-kb cDNA that encodes the entire 825-bp coding region of ovine CD25, the interleukin-2 receptor 55-kDa protein, has been isolated. Comparison of the deduced amino acid sequence with CD25 proteins from other species shows the ovine sequence to have the greatest homology with that of the bovine species.  相似文献   

13.
We have previously characterized an influenza A (H1N1) virus which has host-dependent growth and receptor binding properties and have shown that a mutation which removes an oligosaccharide from the tip of the hemagglutinin (HA) by changing Asn-129 to Asp permits this virus to grow to high titer in MDBK cells, (C. M. Deom, A. J. Caton, and I. T. Schulze, Proc. Natl. Acad. Sci. USA 83:3771-3775, 1986). We have now isolated monoclonal antibodies specific for the mutant HA and have used escape mutants to identify alterations in HA sequence which reduce virus yields from MDBK cells without reducing those from chicken embryo fibroblasts. Two types of escape mutants which grow equally well in chicken embryo fibroblasts were obtained. Those with the parent phenotype contain Asn at residue 129 and are glycosylated at that site. Those with the mutant phenotype are unchanged at residue 129 but have a Gly to Glu substitution at residue 158, which is close to residue 129 on the HA1 subunit. Binding assays with neoglycoproteins containing N-acetylneuraminic acid in either alpha 2,3 or alpha 2,6 linkage to galactose showed that the MDBK-synthesized oligosaccharides at Asn-129 reduce binding to both of these receptors, leaving the HA's preference for alpha 2,6 linkages unchanged. Glu at residue 158 greatly reduces binding to both receptors without reducing virus yields from MDBK cells. We conclude that changes in the receptor binding properties of the HA can result either from direct alteration of the HA protein by host cell glycosylation or from mutations in the HA gene and that these changes generate heterogeneity that can contribute to the survival of influenza A virus populations in nature.  相似文献   

14.
The ligand binding domain of the LDL receptor (LDLR) contains seven structurally homologous repeats. The fifth repeat (LR5) is considered to be the main module responsible for the binding of lipoproteins LDL and β‐VLDL. LR5, like the other homologous repeats, is around 40‐residue long and contains three disulfide bonds and a conserved cluster of negatively charged residues surrounding a hexacoordinated calcium ion. The calcium coordinating cage is formed by the backbone oxygens of W193 and D198, and side‐chain atoms of D196, D200, D206, and E207. The functionality of LDLR is closely associated with the presence of calcium. Magnesium ions are to some extent similar to calcium ions. However, they appear to be involved in different physiological events and their concentrations in extracellular and intracellular compartments are regulated by different mechanisms. Whether magnesium ions can play a role in the complex cycle of LDLR internalization and recycling is not known. We report here a detailed study of the interaction between LR5 and these two cations combining ITC, emission fluorescence, high resolution NMR, and MD simulations, at extracellular and endosomal pHs. Our results indicate that the conformational stability and internal dynamics of LR5 are strongly modulated by the specific bound cation. It appears that the difference in binding affinity for these cations is somewhat compensated by their different concentrations in late LDL‐associated endosomes. While the mildly acidic and calcium‐depleted environment in late endosomes has been proposed to contribute significantly to LDL release, the presence of magnesium might assist in efficient LDLR recycling. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Receptor binding and biological activity properties of human interleukin-1 beta can be dissociated by mutating a single amino acid, arginine 127, to glycine (IL-1 beta R----G) [Gehrke et al. (1990) J. Biol. Chem. 265, 5922-5925]. The mechanism underlying the reduced biological activity has been examined by replacing arginine 127 with several other amino acids, followed by determination of biological activity using a T-helper cell proliferation assay. Mutant IL-1 beta proteins containing lysine, glutamic acid, tryptophan, or alanine in place of arginine 127 maintain biological activity. These data strongly suggest that IL-1 beta biological activity is not directly dependent upon the specific properties of charge, hydrophobicity/hydrophilicity, or side-chain group presented by the residue at position 127. Molecular modeling analyses indicate that the structural integrity of the antiparallel beta-strand 1/12 pair is disturbed in the glycine 127 mutant protein. Collapse of beta-strand 1 into a hydrated space between strands 1, 2, and 4 could structurally alter a cleft in IL-1 beta that contains a cluster of highly conserved amino acids, including a key aspartic acid residue [Ju et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2658-2662]. Mutagenesis data and the differential activities of the IL-1 beta R----G and IL-1 receptor antagonist proteins in stimulating early and late gene expression [Conca et al. (1991) J. Biol. Chem. 266, 16265-16268] suggest that multiple receptor-ligand contacts, exclusive of those required for receptor binding, are required for the stimulation of full IL-1 biological activity.  相似文献   

16.
Using a cell-free translation system we have expressed the Mr 55,000 subunit of the murine IL-2R (p55 IL-2R), which binds IL-2 with low affinity (Kd = 10 nM). Mutants and truncated forms of p55 IL-2R have been used to map the epitopes recognized by three anti-p55 IL-2R mAb: 135D5, 7D4, and 2E4. The mAb 135D5 inhibits IL-2 binding to p55 IL-2R and recognizes an epitope located between amino acids 64 to 125. This epitope can be mimicked by a synthetic peptide corresponding to the region defined by residues 72 to 88. However, the mAb 7D4 and 2E4 do not affect the IL-2 binding to p55 IL-2R. These mAb recognize an epitope of p55 IL-2R lying between residues 125 to 212 that can be mimicked with a peptide corresponding to amino acids 188 to 208. A strong correlation emerged between the experimental results on epitope mapping and predictions of potential antigenicity of murine p55 IL-2R. In addition, we described two internal initiation sites of p55 IL-2R mRNA under the in vitro conditions used leading to the production of significant amounts of N-terminal truncated p55 IL-2R proteins.  相似文献   

17.
Human interleukin-11 (hIL-11) is a pleiotropic cytokine that is involved in numerous biological activities such as hematopoiesis, osteoclastogenesis, neurogenesis and female fertility. IL-11 is obviously a key reagent to study the IL-11 receptors. However, conventional radio-iodination techniques lead to a loss of IL-11 bioactivity. Here, we report the construction and the production of a new recombinant human IL-11 (FP Delta IL-11). In this molecule, a specific phosphorylation site (RRASVA) has been introduced at the N-terminus of rhIL-11. It can be specifically phosphorylated by bovine heart protein kinase and accordingly, easily radiolabeled with (32)P. A high radiological specific activity (250,000 c.p.m x ng(-1) of protein) was obtained with the retention of full biological activity of the protein. The binding of (32)P-labeled FP Delta IL-11 to Ba/F3 cells stably transfected with plasmids encoding human IL-11 receptors alpha and beta chains (IL-11R alpha and gp130) was specific and saturable with a high affinity as determined from Scatchard plot analysis. Availability of this new ligand should prompt further studies on IL-11R structure, expression and regulation.  相似文献   

18.
Interleukin-2 is the primary T cell growth factor secreted by activated T cells. IL-2 is an alpha-helical cytokine that binds to a multisubunit receptor expressed on the surface of a variety of cell types. IL-2Ralpha, IL-2Rbeta, and IL-2Rgammac receptor subunits expressed on the surface of cells may aggregate to form distinct binding sites of differing affinities. IL-2Rgammac was the last receptor subunit to be identified. It has since been shown to be shared by at least five other cytokine receptors. In this study, we have probed the role of IL-2Rgammac in the assembly of IL-2R complexes and in ligand binding. We demonstrate that in the absence of ligand IL-2Rgammac does not possess detectable affinity for IL-2Ralpha, IL-2Rbeta, or the pseudo-high-affinity binding site composed of preformed IL-2Ralpha/beta. We also demonstrate that IL-2Rgammac possesses an IL-2-dependent affinity for IL-2Rbeta and IL-2Ralpha/beta. We performed a detailed biosensor analysis to examine the interaction of soluble IL-2Rgammac with IL-2-bound IL-2Rbeta and IL-2-bound IL-2Ralpha/beta. The kinetic and equilibrium constants for sIL-2Rgammac binding to these two different liganded complexes were similar, indicating that IL-2Ralpha does not play a role in recruitment of IL-2Rgammac. We also determined that the binding of IL-2 to the isolated IL-2Rgammac was very weak (approximate K(D) = 0.7 mM). The experimental methodologies and principles derived from these studies can be extended to at least five other cytokines that share IL-2Rgammac as a receptor subunit.  相似文献   

19.
20.
Using purified human T lymphocytes stimulated in serum-free media with adhered anti-CD3 + exogenous IL-2, we have shown that elevated [cAMP]i (mimicked by CPT-cAMP or induced by the physiological agonist PGE2) directly inhibits mitogen-induced 1) [3H]thymidine incorporation by PBMC, purified T cells, and isolated CD4+ and CD8+ T cell subpopulations; 2) expression of both high- and low-affinity IL-2 receptors; 3) plasma membrane expression of both p55 and p75 subunits of the IL-2 receptor; and 4) expression of p55 mRNA, but not p75 mRNA. The decrease in p55 mRNA is not due to enhanced mRNA metabolism. We conclude that elevated [cAMP]i, acting directly on T cells, inhibits mitogenesis by decreasing IL-2 receptor expression. We discuss the possible physiological relevance for the multiple stages of T cell activation that are sensitive to elevated [cAMP]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号