首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The J4/5 loop of the group I intron in the mouse-derived fungal pathogen Pneumocystis carinii is the docking site for the first step of the RNA-catalyzed self-splicing reaction and thus is a model of a potential drug target. This purine-rich asymmetric internal loop, 5'GGAAG/3'UAGU, is also thermodynamically more stable than other internal loops with two GU closing pairs and three nucleotides opposite two nucleotides. The results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments suggest that the GU closing pairs form and that sheared GA pairs form in the internal loop. The NMR spectra show evidence of conformational dynamics, and several GA pairings are possible. Thus, this dynamic loop presents several possible structures for potential binding of drugs that target group I self-splicing introns. The results also contribute to understanding the structural and dynamic basis for the function and thermodynamic stability of this loop.  相似文献   

2.
Schroeder SJ  Turner DH 《Biochemistry》2001,40(38):11509-11517
Many internal loops that form tertiary contacts in natural RNAs have GU closing pairs; examples include the tetraloop receptor and P1 helix docking site in group I introns. Thus, thermodynamic parameters of internal loops with GU closing pairs can contribute to the prediction of both secondary and tertiary structure. Oligoribonucleotide duplexes containing small internal loops with GU closing pairs were studied by optical melting, one-dimensional imino proton NMR, and one-dimensional phosphorus NMR. The thermodynamic stabilities of asymmetric internal loops with GU closing pairs relative to those of loops with GC closing pairs may be explained by hydrogen bonds. In contrast, the free energy increments for symmetric internal loops of two noncanonical pairs with GU closing pairs relative to loops with GC closing pairs show much more sequence dependence. Imino proton and phosphorus NMR spectra suggest that some GA pairs adjacent to GU closing pairs may form an overall thermodynamically stable but non-A-form conformation.  相似文献   

3.
Schroeder SJ  Turner DH 《Biochemistry》2000,39(31):9257-9274
Optical melting experiments were used to determine the thermodynamic parameters for oligoribonucleotides containing small asymmetric internal loops. The results show a broad range of thermodynamic stabilities, which depend on loop size, asymmetry, sequence, closing base pairs, and length of helix stems. Imino proton NMR experiments provide evidence for possible hydrogen bonding in GA and UU mismatches in some asymmetric loops. The stabilizing effects of GA, GG, and UU mismatches on the thermodynamic stability of internal loops vary depending on the size and asymmetry of the loop. The dependence of loop stability on Watson-Crick closing base pairs may be explained by an account of hydrogen bonds. Models are presented for approximating the free energy increments of 2 x 3 and 1 x 3 internal loops.  相似文献   

4.
The circular DNA decamer 5'-d [formula: see text] 3' is studied in solution by means of NMR spectroscopy. At low temperature the molecule adopts a dumbbell structure with three Watson-Crick C-G base pairs and two two-residue loops in opposite parts of the molecule. On raising the temperature another conformer appears, in which the closing C-G base pair in the 5'-GTTC-3' loop is disrupted, whereas the opposite 5'-CTTG-3' loop remains stable. The two conformers are in slow equilibrium over a limited temperature range.  相似文献   

5.
Experimental and computational studies of the G[UUCG]C RNA tetraloop   总被引:7,自引:0,他引:7  
In prokaryotic ribosomal RNAs, most UUCG tetraloops are closed by a C-G base-pair. However, this preference is greatly reduced in eukaryotic rRNA species where many UUCG tetraloops are closed by G-C base-pairs. Here, biophysical properties of the C[UUCG]G and G[UUCG]C tetraloops are compared, using experimental and computational methods. Thermal denaturation experiments are used to derive thermodynamic parameters for the wild-type G[UUCG]C tetraloop and variants containing single deoxy substitutions in the loop. A comparison with analogous experiments on the C[UUCG]G motif shows that the two RNA species exhibit similar patterns in response to the substitutions, suggesting that their loop structures are similar. This conclusion is supported by NMR data that suggest that the essential UUCG loop structure is maintained in both tetraloops. However, NMR results show that the G[UUCG]C loop structure is disrupted prior to melting of the stem; this behavior is in contrast to the two-state behavior of the C[UUCG]G molecule. Stochastic dynamics simulations using the GB/SA continuum solvation model, run as a function of temperature, show rare conformational transitions in several G[UUCG]C simulations. These results lead to the conclusion that substitution of a G-C for a C-G closing base-pair increases the intrinsic flexibility of the UUCG loop.  相似文献   

6.
An [Formula: see text] interaction between neighboring carbonyl groups has been postulated to stabilize protein structures. Such an interaction would affect the [Formula: see text]C chemical shielding of the carbonyl groups, whose paramagnetic component is dominated by [Formula: see text] and [Formula: see text] excitations. Model compound calculations indicate that both the interaction energetics and the chemical shielding of the carbonyl group are instead dominated by a classical dipole-dipole interaction. A set of high-resolution protein structures with associated carbonyl [Formula: see text]C chemical shift assignments verifies this correlation and provides no evidence for an inter-carbonyl [Formula: see text] interaction.  相似文献   

7.
Znosko BM  Burkard ME  Krugh TR  Turner DH 《Biochemistry》2002,41(50):14978-14987
The contribution of amino groups to the thermodynamics, structure, and dynamics of tandem A.A mismatches is investigated by substitution of purine (P) for adenine (A) within the RNA duplex, 5'(rGGCAAGCCU)(2), to give 5'(rGGCPAGCCU)(2), 5'(rGGCAPGCCU)(2), and 5'(rGGCPPGCCU)(2). The 5'(rGGCAAGCCU)(2) duplex has sheared A(anti).A(anti) (A.A trans Hoogsteen/Sugar-edge) pairs in which the A5 amino group is involved in hydrogen bonds but the A4 amino group is not [Znosko, B. M., Burkard, M. E., Schroeder, S. J., Krugh, T. R., and Turner, D. H. (2002) Biochemistry 41, 14969-14977]. In comparison to 5'(rGGCAAGCCU)(2), replacing the amino group of A4 with a hydrogen stabilizes the duplex by 1.3 kcal/mol, replacement of the A5 amino group destabilizes the duplex by 0.6 kcal/mol, and replacement of both A4 and A5 amino groups destabilizes the duplex by 0.8 kcal/mol. In NMR structures, the P.A noncanonical pairs of the 5'(rGGCPAGCCU)(2) duplex have a sheared anti-anti structure (P.A trans Hoogsteen/Sugar-edge) with P4.A5 interstrand hydrogen bonding and A5 bases that interstrand stack, similar to the structure of 5'(rGGCAAGCCU)(2). In contrast, the A.P pairs of the 5'(rGGCAPGCCU)(2) duplex have a face-to-face conformation (A.P trans Watson-Crick/Watson-Crick) with intrastrand stacking resembling typical A-form geometry. Although the P5 bases in 5'(rGGCPPGCCU)(2) are involved in an interstrand stack, the loop region is largely undefined. The results illustrate that both hydrogen-bonded and non-hydrogen-bonded amino groups play important roles in determining the thermodynamic, structural, and dynamic characteristics of purine rich internal loops.  相似文献   

8.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

9.
Hairpin loops belong to the most important structural motifs in folded nucleic acids. The d(GNA) sequence in DNA can form very stable trinucleotide hairpin loops depending, however, strongly on the closing base pair. Replica-exchange molecular dynamics (REMD) were employed to study hairpin folding of two DNA sequences, d(gcGCAgc) and d(cgGCAcg), with the same central loop motif but different closing base pairs starting from single-stranded structures. In both cases, conformations of the most populated conformational cluster at the lowest temperature showed close agreement with available experimental structures. For the loop sequence with the less stable G:C closing base pair, an alternative loop topology accumulated as second most populated conformational state indicating a possible loop structural heterogeneity. Comparative-free energy simulations on induced loop unfolding indicated higher stability of the loop with a C:G closing base pair by ~3 kcal mol(-1) (compared to a G:C closing base pair) in very good agreement with experiment. The comparative energetic analysis of sampled unfolded, intermediate and folded conformational states identified electrostatic and packing interactions as the main contributions to the closing base pair dependence of the d(GCA) loop stability.  相似文献   

10.
5-(2'-oxoheptadecyl)-resorcinol [structure: see text] and 5-(2'-oxononadecyl)-resorcinol [structure: see text] were isolated from fermentations of an imperfect basidiomycete. The structures of the compounds were determined by spectroscopic techniques. Both compounds exhibit cytotoxic effects against the human colon tumor cell lines COLO-320, DLD-1 and HT-29 and the human promyeloid leukemia cell line HL-60, the human leukemia T cell JURKAT, the human hepatocellular carcinoma cell line HEP-G2 as well as the J774 mouse macrophage cell line. The compounds induce morphological and physiological differentiation of HL-60 cells into granulocytes, which subsequently die by apoptosis. Both compounds show no antibacterial and antifungal activity.  相似文献   

11.
Nguyen MT  Schroeder SJ 《Biochemistry》2010,49(49):10574-10581
Consecutive GU pairs at the ends of RNA helices provide significant thermodynamic stability between -1.0 and -3.8 kcal/mol at 37 °C, which is equivalent to approximately 2 orders of magnitude in the value of a binding constant. The thermodynamic stabilities of GU pairs depend on the sequence, stacking orientation, and position in the helix. In contrast to GU pairs in the middle of a helix that may be destabilizing, all consecutive terminal GU pairs contribute favorable thermodynamic stability. This work presents measured thermodynamic stabilities for 30 duplexes containing two, three, or four consecutive GU pairs at the ends of RNA helices and a model to predict the thermodynamic stabilities of terminal GU pairs. Imino proton NMR spectra show that the terminal GU nucleotides form hydrogen-bonded pairs. Different orientations of terminal GU pairs can have different conformations with equivalent thermodynamic stabilities. These new data and prediction model will help improve RNA secondary structure prediction, identification of miRNA target sequences with GU pairs, and efforts to understand the fundamental physical forces directing RNA structure and energetics.  相似文献   

12.
Kluyveromyces lactis gamma-toxin is a tRNA endonuclease that cleaves Saccharomyces cerevisiae [see text] between position 34 and position 35. All three substrate tRNAs carry a 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) residue at position 34 (wobble position) of which the mcm(5) group is required for efficient cleavage. However, the different cleavage efficiencies of mcm(5)s(2)U(34)-containing tRNAs suggest that additional features of these tRNAs affect cleavage. In the present study, we show that a stable anticodon stem and the anticodon loop are the minimal requirements for cleavage by gamma-toxin. A synthetic minihelix RNA corresponding to the anticodon stem loop (ASL) of the natural substrate [see text] is cleaved at the same position as the natural substrate. In [see text], the nucleotides U(34)U(35)C(36)A(37)C(38) are required for optimal gamma-toxin cleavage, whereas a purine at position 32 or a G in position 33 dramatically reduces the cleavage of the ASL. Comparing modified and partially modified forms of E. coli and yeast [see text] reinforced the strong stimulatory effects of the mcm(5) group, revealed a weak positive effect of the s(2) group and a negative effect of the bacterial 5-methylaminomethyl (mnm(5)) group. The data underscore the high specificity of this yeast tRNA toxin.  相似文献   

13.
Shu Z  Bevilacqua PC 《Biochemistry》1999,38(46):15369-15379
Hairpins are the most common elements of RNA secondary structure, playing important roles in RNA tertiary architecture and forming protein binding sites.Triloops are common in a variety of naturally occurring RNA hairpins, but little is known about their thermodynamic stability. Reported here are the sequences and thermodynamic parameters for a variety of stable and unstable triloop hairpins. Temperature gradient gel electrophoresis (TGGE) can be used to separate a simple RNA combinatorial library based on thermal stability [Bevilacqua, J. M., and Bevilacqua, P. C. (1998) Biochemistry 45, 15877-15884]. Here we introduce the application of TGGE to separating and analyzing a complex RNA combinatorial library based on thermal stability, using an RNA triloop library. Several rounds of in vitro selection of an RNA triloop library were carried out using TGGE, and preferences for exceptionally stable and unstable closing base pairs and loop sequences were identified. For stable hairpins, the most common closing base pair is CG, and U-rich loop sequences are preferred. Closing base pairs of GC and UA result in moderately stable hairpins when combined with a stable loop sequence. For unstable hairpins, the most common closing base pairs are AU and UG, and U-rich loop sequences are no longer preferred. In general, the contributions of the closing base pair and loop sequence to overall hairpin stability appear to be additive. Thermodynamic parameters for individual hairpins determined by UV melting are generally consistent with outcomes from selection experiments, with hairpins containing a CG closing base pair having a DeltaDeltaG degrees (37) 2.1-2.5 kcal/mol more favorable than hairpins with other closing base pairs. Sequences and thermodynamic rules for triloop hairpins should aid in RNA structure prediction and determination of whether naturally occurring triloop hairpins are thermodynamically stable.  相似文献   

14.
The structure and environment of redox active tyrosines present in several metalloenzymes can be studied by resonance Raman spectroscopy or Fourier transform infrared difference spectroscopy. Assignments of the vibrational modes in vivo often requires in vitro studies on model compounds. This approach is briefly reviewed. New results are shown on the influence of isotope-labeling on the infrared spectra of tyrosine, [Formula: see text] and phenol radicals obtained in vitro by UV-irradiation. The infrared spectra of the radicals are dominated by the [Formula: see text] mode at 1515-1504 cm(-1). The frequency shifts induced on this mode by (13)C- (2)H-, and (18)O-labeling are reported.  相似文献   

15.
Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.  相似文献   

16.
Ultrastructure of the epithelium of adult and juvenile Urastoma cyprinae has been studied. The epithelium of both adult and juvenile worms is cellular, ciliated and bears numerous microvilli. The cytoplasm is rich in large, numerous epitheliosomes of two types--electron-dense and with fibrillated content (fig. 1, a, [symbol: see text]; 2, a-[symbol: see text]). Besides large secrete granules small membrane-bounded vesicles were observed (fig. 2, a-[symbol: see text]). In juvenile worms the dense epitheliosomes are less abundant and the fibrillated content in the second type of granules has a different structure: the fibrils are very thin and more densely packed forming the structures of the less electron density (fig. 3, a, [symbol: see text], [symbol: see text] 1). The membrane-bounded vesicles in the epithelium of juvenile worms were not observed. All types of secrete are ejected by exocytosis (fig. 2, [symbol: see text]; 3, [symbol: see text], [symbol: see text]). The ultrastructure of the epithelium in juvenile U. cyprinae is strongly similar to that in parasitic turbellarian Kronborgia, especially to the epithelium in a male and a larva. The basal lamina consists of tree layers and forms numerous deep infoldings into the epithelium (fig. 1, a; 2, a; 3, a, [symbol: see text], [symbol: see text]). The basement membrane projects deep and numerous invaginations into the epithelium which may almost reach the apical membrane (fig. 1, a; 2, a, [symbol: see text], [symbol: see text]; 3, [symbol: see text]). Mitochondria are large and situated mainly near the projections of the basement membrane (fig. 2, [symbol: see text]-[symbol: see text]; 3, [symbol: see text]). Such ultrastructure implies an intensive process of the transmembrane transfer of the dissolved organic substances from the sea water. The same structures were found in the epithelium of Kronborgia. Uptake of organic compounds through the epithelium in the common ancestors of Urastoma and Kronborgia could be the preadaptation to the endoparasitic mode of life in Fecampiida. The differencies in ultrastructure of epithelium in U. cyprinae from the White Sea and from Mediterranean Sea (Noury-Sra?ri e. a., 1990) may be explained by the differences in the method of fixation or by the parasitizing the another host--the mollusk Mytilus galloprovincialis. The ciliary receptors of five types were revealed in U. cyprinae (fig. 3, e, [symbol: see text]; 4; 5; 6). They differ in the shape and length of the ciliary rootlets and in the content of the nerve processes. All receptors lack of the real collars typical for the receptors of Neodermata. Urastoma is most close to the Neodermata amond parasitic turbellarians studied thus far, and the absence of collars in receptors of this species testifies that the collars are the veritable synapomorphy of the Neodermata. The diversity in the ultrastructure and possible functions of receptors correspond to the complicated adaptations of this species. The modern molecular data as well as the ultrastructural evidence attest that parasitic turbellarians of the genera Urastoma, Genostoma and Ichthyophaga are relatives and cannot be included in any turbellarian order known. Therefore Urastoma, Genostoma and Ichthyophaga have been erected in the separate order Urastomida ord. nov. The diagnosis of the new order is given.  相似文献   

17.
Lipopolysaccharide prepared from cells of Yersinia (Pasteurella) pseudotuberculosis of serogroups I, II, III, IV, and V is known to contain the 3,6-dideoxyhexose (DDH) paratose, abequose, paratose, tyvelose, and ascarylose in its respective O-specific side chains. Lipopolysaccharides or lipid-free polysaccharides of all of the 10 known serogroups and subgroups were subjected to methylation analysis and determined as alditol acetates by gas-liquid chromatography and mass spectrometry. The results indicated that the O-specific side chains of nine serotypes are composed of oligosaccharide repeating units in the form of four alternative general structures in which a terminal DDH may vary. These structures are DDH [Formula: see text] 6-deoxy-d-manno-heptose [Formula: see text] d-galactose (serogroups IA, IIA, and IVB), DDH [Formula: see text] d-mannose [Formula: see text] l-fucose (serogroups IB and IIB), and two configurations similar to the latter except that the 4-position of l-fucose was either linked to the d-mannose residue (serogroups VA and VB) or to the DDH residue (serogroups III and IVA). In contrast, O-groups in lipopolysaccharide of the newly discovered serogroup VI contained the DDH colitose and 2-acetamido-2-deoxy-d-galactose. Accordingly, all five known types of DDH have now been detected in lipopolysaccharides of Y. pseudotuberculosis. The sugar 6-deoxy-d-manno-heptose, present in O-specific side chains of serogroups IA, IIA, and IVB, has not yet been reported to occur elsewhere in nature.  相似文献   

18.
Thermodynamics of 2'-ribose substitutions in UUCG tetraloops   总被引:1,自引:0,他引:1       下载免费PDF全文
The ribose 2'-hydroxyl group confers upon RNA many unique molecular properties. To better appreciate its contribution to structure and stability and to monitor how substitutions of the 2' hydroxyl can alter an RNA molecule, each loop pyrimidine ribonucleotide in the UUCG tetraloop was substituted with a nucleotide containing either a fluorine (2'-F), hydrogen (2'-H), amino (2'-NH2), or methoxy (2'-OCH3) group, in the context of both the C:G and G:C loop-closing base pair. The thermodynamic parameters of these tetraloop variants have been determined and NMR experiments used to monitor the structural changes resulting from the substitutions. The modified riboses are better tolerated in the G[UUCG]C tetraloop, which may be due to its increased loop flexibility relative to the C[UUCG]G loop. Even for these simple substitutions, the free-energy change reflects a complex interplay of hydrogen bonding, solvation effects, and intrinsic pucker preferences of the nucleotides.  相似文献   

19.
The 5'(rGGCAAGCCU)(2) duplex contains tandem A.A pairs. The three-dimensional structure of the 5'(rGGCAAGCCU)(2) duplex was modeled by molecular dynamics and energy minimization with NMR-derived distance and dihedral angle restraints. Although the 5'(rCAAG)(2) loop is thermodynamically destabilizing by 1.1 kcal/mol, the tandem A.A pairs adopt a predominant conformation: a sheared anti-anti (A.A trans Hoogsteen/Sugar-edge) alignment similar to that observed in the crystal structure of the P4-P6 domain of the Tetrahymena thermophila intron [Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Science 273, 1678-1685]. The NMR-derived structure of the 5'(rGGCAAGCCU)(2) duplex exhibits cross-strand hydrogen bonds from N3 of A4 to an amino hydrogen of A5 and from the 2' oxygen of the A4 sugar to the other amino hydrogen of A5. An intrastrand hydrogen bond is formed from the 2' OH hydrogen of A4 to O5' of A5. The cross-strand A5 bases are stacked. The Watson-Crick G-C regions are essentially A-form. The sheared anti-anti (A.A trans Hoogsteen/Sugar-edge) alignment provides potential contact sites for tertiary interactions and, therefore, is a possible target site for therapeutics. Thus, thermodynamically destabilizing internal loops can be preorganized for tertiary interactions or ligand binding.  相似文献   

20.
Burkard ME  Turner DH 《Biochemistry》2000,39(38):11748-11762
Nucleotides in RNA that are not Watson-Crick-paired form unique structures for recognition or catalysis, but determinants of these structures and their stabilities are poorly understood. A single noncanonical pair of two guanosines (G) is more stable than other noncanonical pairs and can potentially form pairing structures with two hydrogen bonds in four different ways. Here, the energetics and structure of single GG pairs are investigated in several sequence contexts by optical melting and NMR. The data for r(5'GCAGGCGUGC3')(2), in which G4 and G7 are paired, are consistent with a model in which G4 and G7 alternate syn glycosidic conformations in a two-hydrogen-bond pair. The two distinct structures are derived from nuclear Overhauser effect spectroscopic distance restraints coupled with simulated annealing using the AMBER 95 force field. In each structure, the imino and amino protons of the anti G are hydrogen bonded to the O6 and N7 acceptors of the syn G, respectively. An additional hydrogen-bond connects the syn G amino group to the 5' nonbridging pro-R(p) phosphate oxygen. The GG pair fits well into a Watson-Crick helix. In r(5'GCAGGCGUGC3')(2), the G4(anti), G7(syn) structure is preferred over G4(syn), G7(anti). For single GG pairs in other contexts, exchange processes make interpretation of spectra more difficult but the pairs are also G(syn), G(anti). Thermodynamic data for a variety of duplexes containing pairs of G, inosine, and 7-deazaguanosine flanked by GC pairs are consistent with the structural and energetic interpretations for r(5'GCAGGCGUGC3')(2), suggesting similar GG conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号