首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Submersed aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects on the hydrological regime, sedimentation, nutrient cycling and habitat of associated fauna. Modifications of aquatic plant communities, for example through the introduction of invasive species, can alter these functions. In the Sacramento-San Joaquin River Delta, California, a major invasive submersed plant, Brazilian waterweed Egeria densa, has become widespread and greatly affected the functionality of the submersed aquatic plant community. Rapid assessments of the distribution and abundance of this species are therefore crucial to direct management actions early in the season. Given the E. densa bimodal growth pattern (late spring and fall growth peaks), summer assessments of this species may indicate which and where other submersed species may occur and fall assessments may indicate where this and other species may occur in the following spring, primarily because the Delta’s winter water temperatures are usually insufficient to kill submersed aquatic plant species. We assessed community composition and distribution in the fall of 2007 and summer of 2008 using geostatistical analysis; and measured summer biomass, temperature, pH, salinity, and turbidity. In the fall of 2007, submersed aquatic plants covered a much higher proportion of the waterways (60.7%) than in the summer of 2008 (37.4%), with a significant overlap between the seasonal distribution of native and non-native species. Most patches were monospecific, and multispecies patches had significantly higher dominance by E. densa, co-occurring especially with Ceratophyllum demersum. As species richness of non-natives increased there was a significant decrease in richness of natives, and of native biomass. Sustained E. densa summer biomass negatively affected the likelihood of presence of Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis but not their biomass within patches. Depth, temperature and salinity were associated with biomass; however, the direction of the effect was species specific. Our results suggest that despite native and invasive non-native submersed plant species sharing available niches in the Delta, E. densa affects aquatic plant community structure and composition by facilitating persistence of some species and reducing the likelihood of establishment of other species. Successful management of this species may therefore facilitate shifts in existing non-native or native plant species.  相似文献   

2.
We studied the seasonal resource dynamics between organs of wild rice (Zizania latifolia (Griseb.) Turcz. ex Stapf.) to obtain a better understanding of its growth dynamics, carbon and nutrient translocation. The results of observation from January 2002 to February 2004 showed the shoot density markedly increased after emergence of shoots at the end of March until May (up to 800 ind/m2). However the shoot mortality due to self-thinning reduced the total new shoots by more than 70% by the end of July. Thereafter, the shoot density was nearly constant with the aboveground biomass peaking at the end of August. In the late winter, the rhizome biomass declined by respiration loss to about 25% of its peak value. Meanwhile the decline in rhizome reserves from January to the end of April was about 20%. This small reduction compared with other perennial emergent species implies that there is a lower contribution of rhizome reserves to support new shoot formation. The initial heterotrophic growth of new shoots based on the rhizome resources lasted for a short period, then switched to autotrophic growth at the end of April or the beginning of May. Thus, in most periods of foliage development, nutrients were obtained mostly from soil through uptake by roots, not through resource allocation of the rhizome. In autumn, the standing dead shoots retained most of the nutrients and carbohydrates without translocating downwards. This suggests that in practice, the plant can remove nutrients from sediment more efficiently than other emergent plants.  相似文献   

3.
Imbalanced biomass allocation patterns in emergent aquatic plants to above and below-ground structures as a response to climatic variations and water depth were investigated on the basis of observation of three stable homogeneous populations established under different water regimes and climatic environments in Goulburn and Ourimbah, New South Wales, Australia, from August 2003 to December 2004. The growth of shoots depended on water inundation-drawdown patterns and climatic variations. Shoot density was greater in shallow water but with shorter shoot length and less maximum above-ground biomass density than for plant stands in deep water. Deep-water populations attained higher below-ground biomass with higher above to below-ground biomass ratio than for the shallow-water population. Translocation of carbohydrate reserves between above and below-ground organs in deep-water populations were mostly downward throughout the year whereas the depletion–recharge pattern varied seasonally in shallow water populations. Shoots of deep-water populations grew year-round whereas in shallow water shoots died off after recession of the water level with no re-growth afterward, showing that Eleocharis sphacelata is better adapted to deep water and is stressed under shallow-water conditions. A mathematical model was formulated to describe the growth patterns of E. sphacelata and subsequently to predict the effect of water depth on production. Model simulations are in satisfactory agreement with observed patterns of growth. The model also predicts that maximum production decreases sharply with increasing water depth.  相似文献   

4.
《Aquatic Botany》1986,24(3):241-248
The influence of emersion on carbohydrate accumulation in Hippuris vulgaris L. was studied by comparing the carbohydrate levels of fully submersed plants with those of plants producing emergent shoots.In all plant fractions, the dominant component was stachyose. It reached levels up to 34.6% dry matter.In both growth forms the green submersed parts contained between 2.12 (submersed plants) and 2.41 (plants with emergent apices) times more soluble carbohydrate, respectively, than the corresponding basal white parts. Another pool of carbohydrates was located in the emergent parts: the carbohydrate level of plants with emergent apical sections was about 8 times that of submersed plants.Emergent plants stored about 7 times more carbohydrate in the green submersed parts and 6.2 times more in the basal white parts than fully submersed plants.Thus the effects of direct access to atmospheric sources of CO2, and the lack of any attenuation of irradiance by backscattering or absorbance in the water, achieved by aerial stems, are clearly evident in the different carbohydrate contents of submersed and emergent Hippuris plants.  相似文献   

5.
Utricularia forms the largest genus of carnivorous plants and is characterized by the possession of typical traps (“bladders”). Total biomass allocation was examined in three aquatic, six terrestrial and one epiphytic species of Utricularia from natural habitats in West Africa and from the Botanical Gardens, Bonn. Total biomass of aquatic species was considerably higher than that of terrestrial or epiphytic species. Epiphytic Utricularia accumulate about 35% of their biomass in green leaves, in contrast to 65% of nearly chlorophylless reproductive structures and traps. Aquatic species allocated more than 85% of their total biomass to stolons, leaves and traps, but only 10–13% to reproductive structures. This is in stark contrast to the allocation patterns of terrestrial bladderworts. These species allocate nearly 90% of their total biomass in reproductive structures, and only about 10% to stolons, leaves and traps. This reduction of photosynthetically active plant tissue strongly suggests that as a consequence of the alternative resource of chemical energy, the carnivorous habit might have partly replaced autotrophy in certain terrestrial Utricularia species, especially in some smaller ones.  相似文献   

6.
To elucidate the significance of the simultaneous growth of vegetative and reproductive organs in the prostrate annual Chamaesyce maculata (L.) Small (Euphorbiaceae) from the standpoint of meristem allocation, we investigated plant architecture, meristem allocation, and the spatial and temporal patterns in vegetative growth and reproduction in the reproductive stage. The numbers of secondary and tertiary shoots successively increased by branching in the reproductive stage, and the sum of shoot length was greater in secondary shoots than in primary shoots. The specific shoot length (shoot length per shoot biomass) was greater in lateral shoots than in primary shoots, indicating efficient lateral shoot elongation. The internode length was shorter in secondary shoots than in primary shoots, increasing the number of nodes per shoot length in secondary shoots. Many nodes on a shoot generated two meristems, one of which committed to a flower and one to a lateral shoot. The number of reproductive meristems was greatest in tertiary shoots, and 96% of total reproductive meristems on shoots were generated in lateral shoots. On almost all nodes, the reproductive meristem developed into a flower, and 95–98% of the flowers produced a fruit. Therefore, vegetative growth by branching in the reproductive stage contributed to the increase in reproductive outputs. From the standpoint of meristem allocation, the simultaneous growth of vegetative and reproductive organs in prostrate plant species might be important for increasing the number of growth and reproductive meristems, resulting in the increase in reproductive outputs.  相似文献   

7.
Nuisance growth of Myriophyllum aquaticum has often been attributed to high amounts of nutrients. The uptake of nitrogen and phosphorus from sediments and their allocation have been documented in both natural and laboratory populations. However, nutrient loading to surface water is increasingly becoming an important issue for water quality standards. Aquatic macrophytes that develop adventitious roots may be able to survive through the uptake of water column nutrients. Our objectives for this study were to assess M. aquaticum growth when combinations of nitrogen and phosphorus were added to the water column. Mesocosm experiments were conducted where nitrogen (1.8, 0.8, and 0.4 mg l−1; high, medium, and low) and phosphorus (0.09, 0.03, 0.01 mg l−1; high, medium, and low) concentrations were paired and added to the water column. After 12 weeks, the combination of 1.80:0.01 N:P resulted in greater (P < 0.01) total biomass and greater biomass for all plant tissues. Total biomass at the 1.80:0.01 N:P combination was 53% greater than biomass at all other combinations. The yield response of M. aquaticum was a quadratic function of tissue nutrient content. Yield was positively (r 2 = 0.82) related to increasing nitrogen content, whereas a negative (r 2 = 0.89) relationship was determined for increasing phosphorus content. We propose the negative relationship is due to increased nutrient competition and shading by algae resulting in reduced M. aquaticum growth. Tissue nutrient content indicated that critical concentrations (1.8% nitrogen and 0.2% phosphorus) for growth were not attained except for nitrogen in plants grown in the 1.80:0.01 N:P combination. These data provide further evidence that M. aquaticum requires high levels of nitrogen to achieve nuisance growth. Survival through uptake of water column nutrients may be a mechanism for survival during adverse conditions, a means of long distance dispersal of fragments, or may offer a competitive advantage over species that rely on sediment nutrients.  相似文献   

8.
In many resprouting plants, carbohydrates are stored as starch in roots and will be mobilized to support above-ground tissue regrowth after shoot damage. Our objective was to determine how activities of starch hydrolytic enzymes change damage-induced starch mobilization in Caragana korshinskii roots after above-ground tissue loss. Zero percent (control), 30% (30% RSL), 60% (60% RSL) of main shoot length, and 25% (25% RSN), 50% (50% RSN), and 100% (100% RSN) of main shoot number were removed. Compared with control plants, clipping accelerated the reduction of starch in the roots, increased sucrose flux per flower per hour and nectar production per flower per day in 30% RSL, 60% RSL, 25% RSN, and 50% RSN treatments, and improved vegetative growth in 100% RSN treatment. All treatments had similar total nonstructural carbohydrate (TNC) concentrations in leaves, shoots, and stems with the exception of 100% RSN with higher TNC concentration in shoots. Both α-, and β-amylase activities were enhanced by clipping, the former being more strongly correlated with starch degradation in the roots than the latter. The other two possible starch-breaking enzymes, α-glucosidase, and starch phosphorylase showed no significant differences in the activities between treatments. The results suggest that starch degradation in the roots of C. korshinskii was regulated by α-amylase activity and more mobilized starch was used to support vegetative growth in 100% RSN treatment and support sexual reproduction followed by other clipping treatments.  相似文献   

9.
Life cycle of Egeria densa planch., an aquatic plant naturalized in Japan   总被引:1,自引:0,他引:1  
The ecophysiological life cycle of Egeria densa Planch., in a lotic irrigation ditch was evaluated. Phenological and quantitative measurements were made from August 1984 to July 1985. Lateral shoots with roots developed and elongated to the surface of the water when the bottom-water temperature increased above c. 15°C. Root crown developed simultaneously as the plant biomass increased. Dense shoot crown was formed under the water surface after the shoot reached the water surface. Plant biomass had two maxima in August and December-January. The bimodal curve in plant biomass was caused by the difference of growth attributed to the winter-type and summer-type plants. Relative growth rate, in length, of summer-type plants occurred at an optimum temperature of 20.7°C in culture. The seasonal activity of photosynthesis and respiration was measured in March, August and December. The optimum temperature of net photosynthesis of the summer-type plants reached a high 35°C similar to that of the C4 plant. The compensation for light intensity at 35°C was 340 lux. Each photosynthesis-temperature curve suggested that Egeria had the ability to adapt to the seasonal changes in temperature in the natural habitat. The maximum starch concentrations reached 25.4% in the leaf and 22.6% in the stem in December. The shortage in the balance of organic matter for overwintering was found to be maintained by stored starch in the leaf and the stem.  相似文献   

10.
切除5cm顶枝使加拿大伊乐藻生物量立即下降28%,净光合作用速率(Pn)和植株光合作用产量(PhP)与对照相比立即下降50%以上,去顶也对各种生长指标造成不同程度的即时损伤。经过随后28d的生长试验后,处理组与对照相比,生物量和总枝长(主枝+侧枝)增长率分别下降45%和53%,主枝伸长几乎停止;侧枝(分枝)数增长略有下降;水分含量明显增加;试验期间Pn平均下降了40%,PhP平均下降了51%.表明去顶对生物量增长、主枝伸长和冠层的发育有明显的抑制,对分枝数没有明显的影响。光合产量较生物量增长幅度的下降明显要大,其恢复去顶前水平的时间也比后者要长一倍。根据结果,讨论了去顶对沉水植物生长的影响机制、沉水植物的恢复能力并和其它收获试验进行了比较。    相似文献   

11.
Summary The effects of CO2 enrichment on plant growth, carbon and nitrogen acquisition and resource allocation were investigated in order to examine several hypotheses about the mechanisms that govern dry matter partitioning between shoots and roots. Wild radish plants (Raphanus sativus × raphanistrum) were grown for 25 d under three different atmospheric CO2 concentrations (200 ppm, 330 ppm and 600 ppm) with a stable hydroponic 150 mol 1–1 nitrate supply. Radish biomass accumulation, photosynthetic rate, water use efficiency, nitrogen per unit leaf area, and starch and soluble sugar levels in leaves increased with increasing atmospheric CO2 concentration, whereas specific leaf area and nitrogen concentration of leaves significantly decreased. Despite substantial changes in radish growth, resource acquisition and resource partitioning, the rate at which leaves accumulated starch over the course of the light period and the partitioning of biomass between roots and shoots were not affected by CO2 treatment. This phenomenon was consistent with the hypothesis that root/shoot partitioning is related to the daily rate of starch accumulation by leaves during the photoperiod, but is inconsistent with hypotheses suggesting that root/shoot partitioning is controlled by some aspect of plant C/N balance.  相似文献   

12.
黑河中游荒漠草地地上和地下生物量的分配格局   总被引:2,自引:0,他引:2       下载免费PDF全文
草地生态系统中地上和地下生物量的分配方式对于研究生态系统碳储量和碳循环有着重要的意义。为了解黑河中游荒漠草地的地上和地下生物量分配格局, 从群落和个体两个水平对黑河中游的地上和地下生物量进行了调查。结果表明: 群落水平上地上生物量介于3.2-559.2 g·m-2之间, 地下生物量介于3.3-188.2 g·m-2之间, 个体水平上地上生物量介于6.1-489.0 g·株-1之间, 地下生物量介于2.4-244.2 g·株-1之间, 群落水平上的根冠比(R/S)为0.10-2.49, 个体水平上为0.07-1.55, 地下生物量均小于地上生物量, 群落水平上R/S值大于个体水平。群落和个体水平地上和地下生物量的拟合斜率分别为1.1001和0.9913, 与1没有显著差异, 说明地上与地下生物量呈等速生长关系。群落和个体水平土壤表层0-20 cm和0-30 cm的根系生物量分别占全部根系生物量的89.81%、96.95%和81.42%、93.62%, 表明地下生物量主要集中在0-20 cm和0-30 cm土壤表层。  相似文献   

13.
Plant growth, biomass allocation and autofragmentation were investigated in response to root and shoot competition in the submersed macrophyte Myriophyllum spicatum L. growing in two sediment environments. Biomass accumulation and allocation were significantly affected by sediment fertility, with a higher total biomass observed in fertile sediment (average: 4.69 g per plant vs. 1.12 g per plant in infertile sediment). Root-to-shoot ratios were 0.34 and 0.06 in the infertile and fertile sediments, respectively, reflecting the high investment placed on roots under infertile conditions. In the presence of root, shoot, and full competition, whole plant biomass decreased by 18%, 12% and 24% in the infertile sediments, and 23%, 25% and 33% in the fertile sediments, respectively. Root weight ratios (RWRs) increased with root competition by 38% (P < 0.001) and 12% (P = 0.002), while leaf weight ratios (LWRs) decreased with shoot competition by 6% (P = 0.042) and 5% (P = 0.001) in the infertile and fertile sediments, respectively. A total of 406 autofragments were harvested in the fertile sediments, but none were obtained from the infertile sediments. In the control, autofragment number and biomass was 166% and 175% higher compared to the competition treatment. Root and shoot competition resulted in a 21% (P = 0.043) and 18% (P = 0.098) decrease in the autofragment biomass, respectively. These results indicated that M. spicatum responds to different sediment fertility by changing its allocation patterns. Moreover, both root and shoot competition influenced plant growth and autofragmentation, while sediment nutrient availability played an important role in M. spicatum autofragmentation.  相似文献   

14.
The shoot tip-galling wasp Tetramesa romana Walker (Hymenoptera: Eurytomidae) has been released for biological control of giant reed or arundo (Arundo donax L.) (Poaceae), an invasive grass in the USA and Mexico. The role of urea fertilization to improve plant-based mass-rearing was examined. In a greenhouse study, rhizomes were fertilized with urea pellets at rates equivalent to 1000 kg (low), 2000 kg (moderate), and 4000 (high) kg N per ha–1. Total nitrogen content of ungalled stems was significantly 0.60–0.65% higher under low and moderate fertilization compared to unfertilized pots, and shoot water content was elevated 3–4% at all urea levels. Moderate fertilization significantly (by 1.4-fold) increased the relative growth rate of all shoots in pots, but did not affect final dry biomass. Fertilization did not affect number and duration of probing events by females. The percentage of shoots colonized by wasps that were galled, progeny production per shoot and per female, and emergent wasp size were not affected. However, average generation time (adult to adult) of emergent wasps was 4–5 days shorter on shoots in pots under moderate and high urea fertilization. After a four-week wasp emergence period, only 3–9% of progeny remained in fertilized shoots, while 21% of progeny remained inside unfertilized shoots. In field plots, fertilization did not affect gall density per m shoot length or per female released. Urea fertilization increased the efficiency of greenhouse rearing of the arundo wasp and availability of adults for release, even without direct effects on gall production.  相似文献   

15.
BACKGROUND AND AIMS: This study analysed the differences in nitrogen (N), non-structural carbohydrates (NSC) and biomass allocation to the roots and shoots of 18 species of Mediterranean dwarf shrubs with different shoot-rooting and resprouting abilities. Root N and NSC concentrations of strict root-sprouters and species resprouting from the base of the stems were also compared. METHODS: Soluble sugars (SS), starch and N concentrations were assessed in roots and shoots. The root : shoot ratio of each species was obtained by thorough root excavations. Cross-species analyses were complemented by phylogenetically independent contrasts (PICs). KEY RESULTS: Shoot-rooting species showed a preferential allocation of starch to shoots rather than roots as compared with non-shoot-rooting species. Resprouters displayed greater starch concentrations than non-sprouters in both shoots and roots. Trends were maintained after PICs analyses, but differences became weak when root-sprouters versus non-root-sprouters were compared. Within resprouters, strict root-sprouters showed greater root concentrations and a preferential allocation of starch to the roots than stem-sprouters. No differences were found in the root : shoot ratio of species with different rooting and resprouting abilities. CONCLUSIONS: The shoot-rooting ability of Mediterranean dwarf shrubs seems to depend on the preferential allocation of starch and SS to shoots, though alternative C-sources such as current photosynthates may also be involved. In contrast to plants from other mediterranean areas of the world, the resprouting ability of Mediterranean dwarf shrubs is not related to a preferential allocation of N, NSC and biomass to roots.  相似文献   

16.
Abstract Decomposition of standing litter of the emergent macrophyte Erianthus giganteus (plumegrass) was quantified in a small freshwater wetland in Alabama, USA. Living green shoots of E. giganteus were tagged and periodically retrieved for determination of leaf and culm mass loss, litter-associated fungal biomass (ergosterol), and nitrogen and phosphorus concentrations. Laboratory studies were also conducted to examine the effects of plant litter moisture content and temperature on rates of CO2 evolution from plant litter. Culm and leaf material lost 25 and 32% AFDM, respectively, during plant senescence and early litter decay. Fungal biomass, as determined by ergosterol concentrations, increased significantly in both leaf and culm litter during decomposition, with maximum biomass accounting for 3.7 and 6.7% of the total detrital weight in culm and leaf litter, respectively. Spatial differences in fungal biomass were observed along the culm axis, with upper regions of the culm accumulating significantly greater amounts of fungal mass than basal regions (p < 0.01, ANOVA). Rates of CO2 evolution from both leaf and culm litter increased rapidly after wetting (0 to 76 μg CO2−C g−1 AFDM h−1 within 5 min). In addition, rates of CO2 evolution from water saturated culms increased exponentially as the temperature was increased from 10 to 30°C. These results provide evidence that considerable microbial colonization and mineralization of standing emergent macrophyte litter can occur before collapse of senescent shoot material to the water and sediment surface. Received: 5 December 1998; Accepted: 31 March 1999  相似文献   

17.
Aim Climate‐driven changes affecting ecosystem primary production have been well documented for many vegetation types, while the effects of climate on plant populations remains unclear. Herein, we address the relationships between climatic variables and shoot density, reproductive allocation and shoot biomass in Leymus chinensis on a large‐scale climatic gradient in 2000. Location Nine sites experiencing similar light regimes, but differing in longitude, precipitation and altitude were selected on the North‐east China Transect (NECT) from 115° to 124°E, around a latitude of 43.5°N. Methods Densities of total, vegetative and reproductive shoots and of shoot biomass were measured twice over the growing season in each site. Climatic data were taken from the climate database of the Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences and from the local weather stations throughout the NECT. Results Densities of total, vegetative and reproductive shoots increased significantly from the west to the east and from dry to moist along the NECT, and were strongly correlated with annual precipitation (r2 = 0.934, 0.943 and 0.863, respectively) and an aridity index (r2 = 0.809, 0.816 and 0.744, respectively). The average total shoot density at the east end (470/m2) was about three times that at the west (160/m2). Reproductive allocation and shoot biomass for both vegetative and reproductive shoots increased with precipitation and declined with the aridity index along the NECT. There were positive correlations between shoot biomass and annual precipitation for vegetative shoots (P < 0.05, R2 = 0.604) and March precipitation for reproductive shoots (P < 0.05, R2 = 0.533), respectively. Main conclusions These findings suggest that L. chinensis adjusts to decreasing precipitation/increasing aridity by alterations in shoot density, reproductive allocation and shoot biomass along the drought gradient of the NECT.  相似文献   

18.
The effects of uniconazole (S-3307) application on the growth and cadmium (Cd) accumulation of accumulator plant Malachium aquaticum (L.) Fries. were studied through a pot experiment. The application of S-3307 increased the biomass and photosynthetic pigment content of M. aquaticum in Cd-contaminated soil, and also improved the superoxide dismutase (SOD) and peroxidase (POD) activities in M. aquaticum. Application of S-3307 increased Cd content in shoots and decreased Cd content in roots of M. aquaticum, but the translocation factor (TF) of M. aquaticum increased with the increase of S-3307 concentration. For phytoextraction, the application of S-3307 increased Cd extractions by roots, shoots and whole plants of M. aquaticum, and the maxima were obtained at 75 mg L?1 S-3307, which increased by 22.07%, 37.79% and 29.07%, respectively, compared with their respective controls. Therefore, S-3307 can be used for enhancing the Cd extraction ability of M. aquaticum, and 75 mg L?1 S-3307 was the optimal dose.  相似文献   

19.
The submersed macrophyte Vallisneria americana was grown for seven weeks in a greenhouse to test for differences in the ability of three different sediments to support growth stimulation in response to CO2 enrichment at low pH. Plants accumulated 21- to 24-fold greater biomass at 10 × ambient CO2 concentrations than at ambient CO2 on all sediments. At both CO2 levels, plants grown on sediment from an acidified lake accumulated ca. 81%, and those grown on oligotrophic lake sediment ca. 47% as much biomass as plants grown on alkaline lake sediment. Despite striking CO2 and sediment effects on biomass accumulation, there was no significant interaction (using log-transformed data) between CO2 and sediment effects, indicating that all sediments allowed similar proportionate growth responses to CO2 enrichment. Plants grown on the less fertile sediments showed greater relative allocation to horizontal versus vertical growth by producing more rosette-bearing stolons in relation to plant height (leaf length) than plants grown on relatively fertile, alkaline lake sediment. Tissue analysis suggested that sediment effects on Vallisneria growth could be attributed neither to mineral putrient (nitrogen and phosphorus) limitation nor to aluminum toxicity in these low pH treatments. In any case, CO2 availability can be an important regulator of submersed macrophyte growth at low pH on a variety of sediment types, including those from oligotrophic and acidic lakes.  相似文献   

20.
The population and production ecology of aZizania latifolia stand at a sheltered shore of the Hitachi-Tone River were investigated. Shoot emergence was observed twice a year; the fist was a synchronized shoot emergence in April and the second was from August to October. Aboveground biomass was mostly occupied by leaves and peaked at 1500 g dry weight m−2 in August. The belowground biomass also reached its peak, 750 g dry weight m−2, in August. The secondary shoots were small in spite of their high density. Leaves were produced continuously throughout the season. The leaf life span was as short as 55.6 days for cohorts that emerged from May through to September. Total annual net production ofZ. latifolia could be more than 3400 g dry weight m−2. Shoot clusters of several centimeters were observed in April. The following self-thinning caused a regular distribution of the remaining shoots in August. Most shoots produced in August to October were found near a shoot persisting since April. They showed more concentrated distribution than shoots in April. A large biomass allocation to leaves and the ability to produce many clump shoots during the late growing period may facilitate dominance ofZ. latifolia in relatively sheltered sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号