首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neoporphyra haitanensis is an economically important red seaweed that inhabits upper intertidal zones. The thallus tolerates extreme fluctuating environmental stresses (e.g., surviving more than 80% water loss during low tides). To elucidate the global molecular responses relevant to this outstanding desiccation tolerance, a quantitative proteomics analysis of N. haitanensis under different desiccation treatments as well as rehydration was performed. According to the clustering of expression patterns and the functional interpretation of the 483 significantly differentially expressed proteins, a three-stage cellular response to desiccation stress and subsequent rehydration was proposed. Stage I: at the beginning of water loss, multiple signal transduction pathways were triggered including lipid signaling, protein phosphorylation cascades, and histone acetylation controlling acetate biosynthesis to further modulate downstream hormone signaling. Protein protection by peptidyl-prolyl isomerase and ROS scavenging systems were also immediately switched on. Stage II: with the aggravation of stress, increases in antioxidant systems, the accumulation of LEA proteins, and the temporary biosynthesis of branched starch were observed. Multiple enzymes involved in redox homeostasis, including peroxiredoxin, thioredoxin, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione reductase, were hypothesized to function in specific cellular compartments. Stage III: when the desiccated thalli had rehydrated for 30 mins, photosynthesis and carbon fixation were recovered, and antioxidant activities and protein structure protection were maintained at a high level. This work increases the understanding of the molecular responses to environmental stresses via a proteomic approach in red seaweeds and paves the way for further functional studies and genetic engineering.  相似文献   

2.
Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC–MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3–6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.  相似文献   

3.
The present study focused on comparative proteome analyses of low- and high-temperature stresses and potential protein-protein interaction networks, constructed by using a bioinformatics approach, in response to both stress conditions. The data revealed two important points: first, the results indicate that low-temperature stress is tightly linked with oxidative stress as well as photosynthesis; however, no specific mechanism is revealed in the case of the high-temperature stress response. Second, temperature stress was revealed to be linked with nitrogen and ammonia assimilation. Moreover, the data also highlighted the cross-talk of signaling pathways. Some of the detected signaling proteins, e.g., Hik14, Hik26 and Hik28, have potential interactions with differentially expressed proteins identified in both temperature stress conditions. Some differentially expressed proteins found in the Spirulina protein-protein interaction network were also examined for their physical interactions by a yeast two hybrid system (Y2H). The Y2H results obtained in this study suggests that the potential PPI network gives quite reliable potential interactions for Spirulina. Therefore, the bioinformatics approach employed in this study helps in the analysis of phenomena where proteome analyses of knockout mutants have not been carried out to directly examine for specificity or cross-talk of signaling components.  相似文献   

4.
Pterostilbene (PTS), a naturally occurring stilbene, confers protection against oxidative and cytokine stress induced pancreatic β-cell apoptosis in vitro and in vivo. To provide insights into the molecular mechanism, we performed a proteomic study on the pancreas of PTS-treated diabetic mice using electrospray ionization tandem–mass spectrometry (LC–MS/MS). A total of 1,260 proteins were detected in triplicate samples. Of which, 359 proteins were found to be differentially regulated in streptozotocin-induced diabetic mice pancreas with two fold difference ( P < 0.05, two or more peptides) and on PTS treatment 315 proteins were normalized to control levels. Gene ontology (GO) indicated that majority of the differentially regulated proteins are involved in cellular functions such as metabolism, cellular structure, oxidative stress, endoplasmic-reticulum-associated protein degradation (ERAD) pathway and several stress sensors. Protein–protein interaction network analysis of these differentially expressed proteins showed clustering of proteins involved in protein processing in endoplasmic reticulum (protein synthesis machinery and protein folding), oxidative phosphorylation/oxidative stress proteins, oligosaccharide metabolic process, and antioxidant activity. Our results highlighted that PTS administration rehabilitated the defective metabolic process and redox imbalance, and also suppressed the unfolded protein response and ERAD pathways. The effects on targeting ER machinery and suppressing oxidative stress suggest the great potential of PTS for diabetes management.  相似文献   

5.

Background  

Evolutionary rates of proteins in a protein-protein interaction network are primarily governed by the protein connectivity and/or expression level. A recent study revealed the importance of the features of the interacting protein partners, viz., the coefficient of functionality and clustering coefficient in controlling the protein evolutionary rates in a protein-protein interaction (PPI) network.  相似文献   

6.
7.
为了解东乡野生稻(Oryza rufipogon)对低温胁迫的响应机制,对苗期的RNA-seq转录表达谱进行了研究。结果表明,与对照相比,共检测到10 200个差异表达基因(DEGs),其中5 201个上调表达,4 999个下调表达,其中有426个DEGs位于已报道的水稻耐冷QTL区间,且37个为耐冷调控相关的家族基因。GO功能分类和KEGG代谢路径分析表明,核酸结合转录因子活性、氨基酸生物合成以及光合作用代谢等均参与响应低温胁迫过程。实时荧光定量分析表明,ABA响应蛋白基因、MYB转录因子和40S核糖体蛋白SA基因等12个可能与低温胁迫响应相关的DEGs表达模式与RNA-seq的一致。可见,植物激素传导途径和转录因子相关调控基因在东乡野生稻苗期响应低温胁迫过程中起重要作用。  相似文献   

8.
9.
10.
11.
为研究木薯叶片光合效率对块根产量的影响,本研究利用蛋白质组学方法分析花叶木薯变种(低产种质)和栽培种ZM-Seaside(高产种质)光合作用能力的差异,揭示其鲜薯产量差异原因,为选育高产木薯品种提供基础数据。采用便携式LI-6400光合作用测定仪测定叶片净光合速率(Pn)、气孔导度(Cs)、胞间CO2浓度(Ci)和蒸腾速率(Tr),表明栽培种ZM-Seaside和花叶木薯变种叶片Cs、Ci和Tr没有显著差异,但ZM-Seaside的Pn显著高于花叶木薯变种;利用Western Blot技术分析叶片蛋白质表达水平,结果显示ZM-Seaside叶片与光合作用相关蛋白质Rubisco、OEC和PRXQ的表达水平显著高于花叶木薯变种;采用苯酚法提取叶片全蛋白质,并进行双向电泳分离,及Delta2D软件确定差异蛋白质点,以花叶木薯为对照,在ZM-Seaside叶片蛋白质双向电泳图谱上得到20个差异蛋白质点,其中上调表达15个,下调表达5个;通过MALDI-TOF-MS鉴定差异蛋白质,结合KEGG数据库将其按照功能进行分类,成功鉴定到其中16个涉及光合作用、碳和能量代谢、分子伴侣、结构蛋白、保护蛋白、解毒和抗氧化及未知功能蛋白质;利用String在线软件构建蛋白质互作网络,推测Ribulose-5-phosphate-3-epimerase和chloroplast latex aldolase-like protein是影响木薯叶片光合效率的关键蛋白质,由于它们的上调表达,对木薯块根产量提高有一定促进作用。  相似文献   

12.
Chrysanthemum is one of the most important ornamental flowers in the world, and temperature has a significant influence on its field production. In the present study, differentially expressed proteins were investigated in the leaves of Dendranthema grandiflorum ‘Jinba’ under high temperature stress using label-free quantitative proteomics techniques. The expressed proteins were comparatively identified and analyzed. A total of 1,463 heat-related, differentially expressed proteins were successfully identified by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS), and 1,463 heat-related, differentially expressed proteins were successfully identified by mass spectrometry after a high temperature treatment. Among these, 701 proteins were upregulated and 762 proteins were downregulated. The in-depth bioinformatics analysis of these differentially expressed proteins revealed that these were involved in energy metabolism pathways, protein metabolism, and heat shock. In the present study, the investigators determined the changes in the levels of some proteins, and their expression at the protein and molecular levels in chrysanthemum to help reveal the mechanism of heat resistance in chrysanthemum. Furthermore, the present study elucidated some of the proteins correlated to heat resistance in chrysanthemum, and their expression changes at the protein and molecular levels to help reveal the mechanism of heat resistance in this flower species. These results provide a theoretical basis for the selection of new heat resistant varieties of chrysanthemum in the field.  相似文献   

13.
Differential detergent fractionation (DDF) is frequently used to partition fresh cells and tissues into distinct compartments. We have tested whether DDF can reproducibly extract and fractionate cellular protein components from frozen tissues. Frozen kidneys were sequentially extracted with three different buffer systems. Analysis of the three fractions with liquid chromatography–tandem mass spectrometry (LC–MS/MS) identified 1693 proteins, some of which were common to all fractions and others of which were unique to specific fractions. Normalized spectral index (SIN) values obtained from these data were compared to evaluate both the reproducibility of the method and the efficiency of enrichment. SIN values between replicate fractions demonstrated a high correlation, confirming the reproducibility of the method. Correlation coefficients across the three fractions were significantly lower than those for the replicates, supporting the capability of DDF to differentially fractionate proteins into separate compartments. Subcellular annotation of the proteins identified in each fraction demonstrated a significant enrichment of cytoplasmic, cell membrane, and nuclear proteins in the three respective buffer system fractions. We conclude that DDF can be applied to frozen tissue to generate reproducible proteome coverage discriminating subcellular compartments. This demonstrates the feasibility of analyzing cellular compartment-specific proteins in archived tissue samples with the simple DDF method.  相似文献   

14.

Background  

A large number of papers have been published on analysis of microarray data with particular emphasis on normalization of data, detection of differentially expressed genes, clustering of genes and regulatory network. On other hand there are only few studies on relation between expression level and composition of nucleotide/protein sequence, using expression data. There is a need to understand why particular genes/proteins express more in particular conditions. In this study, we analyze 3468 genes of Saccharomyces cerevisiae obtained from Holstege et al., (1998) to understand the relationship between expression level and amino acid composition.  相似文献   

15.
16.
该研究以不同失水处理的发菜为研究材料,以充分吸水状态的发菜为对照,利用高通量测序技术和qRT PCR技术检测了干旱胁迫下发菜光合作用相关基因差异表达规律,并对光合色素和酶活在干旱胁迫下的变化进行了研究。结果表明:(1)发菜在不同程度干旱胁迫下有113个光合作用相关基因差异表达,其中失水30%、75%和100%的发菜分别有44个、74个和91个光合作用相关基因差异表达。(2)随着干旱胁迫程度的加深藻胆素、叶绿素a和类胡萝卜素含量逐渐降低,Rubisco活性随着干旱胁迫程度的增强先上升后下降,GAPDH活性随着干旱胁迫的增强呈现下降的趋势。研究表明,发菜通过光合作用相关基因的差异表达调控光合作用以适应干旱胁迫。该研究结果对进一步研究发菜干旱胁迫响应机制及其耐旱光合机理奠定了基础。  相似文献   

17.
18.
  • Arbuscular mycorrhizal fungi (AMF) is an effective way to remove heavy metals’ inhibition on plants, however, few relevant research attempts have been made to determine the contribution of AMF to the physiological and biochemical changes related to the enhanced copper tolerance of Phragmites australis under metal‐stressed conditions.
  • In this study, the effects of AMF inoculation on P. australis under different concentrations of copper stress were investigated according to the changes in the parameters related to growth and development, and photosynthetic charateristics. Then, differentially expressed proteins (DEPs) were evaluated by the Isobaric Tag for Relative and Absolute Quantification (iTRAQ) system, which could accurately quantify the DEPs by measuring peak intensities of reporter ions in tandem mass spectrometry (MS/MS) spectra.
  • It was found that AMF inoculation may relieve the photosynthesis inhibition caused by copper stress on P. australis and thus promote growth. Proteomic analysis results showed that under copper stress, the inoculation of R. irregularis resulted in a total of 459 differently‐expressed proteins (200 up‐regulated and 259 down‐regulated) in root buds. In addition, the photosynthetic changes caused by AMF inoculation mainly involve the up‐regulated expression of transmembrane protein–pigment complexes CP43 (photosystem II) and FNR (ferredoxin‐NADP+ oxidoreductase related to photosynthetic electron transport).
  • These results indicate that AMF could effectively improve the growth and physiological activity of P. australis under copper stress, and thus provides a new direction and instructive evidence for determining the mechanisms by which AMF inoculation enhances the copper tolerance of plants.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号