首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The production, purification and characterization of cold active lipases by Yarrowia lipolytica NCIM 3639 is described. The study presents a new finding of production of cell bound and extracellular lipase activities depending upon the substrate used for growth. The strain produced cell bound and extracellular lipase activity when grown on olive oil and Tween 80, respectively. The organism grew profusely at 20 °C and at initial pH of 5.5, producing maximum extracellular lipase. The purified lipase has a molecular mass of 400 kDa having 20 subunits forming a multimeric native protein. Further the enzyme displayed an optimum pH of 5.0 and optimum temperature of 25 °C. Peptide mass finger printing reveled that some peptides showed homologues sequence (42%) to Yarrowia lipolytica LIP8p. The studies on hydrolysis of racemic lavandulyl acetate revealed that extracellular and cell bound lipases show preference over the opposite antipodes of irregular monoterpene, lavandulyl acetate.  相似文献   

2.
MELDB: a database for microbial esterases and lipases   总被引:1,自引:0,他引:1  
Kang HY  Kim JF  Kim MH  Park SH  Oh TK  Hur CG 《FEBS letters》2006,580(11):2736-2740
MELDB is a comprehensive protein database of microbial esterases and lipases which are hydrolytic enzymes important in the modern industry. Proteins in MELDB are clustered into groups according to their sequence similarities based on a local pairwise alignment algorithm and a graph clustering algorithm (TribeMCL). This differs from traditional approaches that use global pairwise alignment and joining methods. Our procedure was able to reduce the noise caused by dubious alignment in the distantly related or unrelated regions in the sequences. In the database, 883 esterase and lipase sequences derived from microbial sources are deposited and conserved parts of each protein are identified. HMM profiles of each cluster were generated to classify unknown sequences. Contents of the database can be keyword-searched and query sequences can be aligned to sequence profiles and sequences themselves.  相似文献   

3.
Lignin holds tremendous potential as a renewable feedstock for upgrading to a number of high-value chemicals and products that are derived from the petroleum industry at present. Since lignin makes up a significant fraction of lignocellulosic biomass, co-utilization of lignin in addition to cellulose and hemicelluloses is vital to the economic viability of cellulosic biorefineries. The recalcitrant nature of lignin, originated from the molecule's compositional and structural heterogeneity, however, poses great challenges toward effective and selective lignin depolymerization and valorization. Ionic liquid (IL) is a powerful solvent that has demonstrated high efficiency in fractionating lignocellulosic biomass into sugar streams and a lignin stream of reduced molecular weight. Compared to thermochemical methods, biological lignin deconstruction takes place at mild temperature and pressure while product selectivity can be potentially improved via the specificity of biocatalysts (lignin degrading enzymes, LDEs). This review focuses on a lignin valorization strategy by harnessing the biomass fractionating capabilities of ILs and the substrate and product selectivity of LDEs. Recent advances in elucidating enzyme-IL interactions as well as strategies for improving enzyme activity in IL are discussed, with specific emphases on biocompatible ILs, thermostable and IL-tolerant enzymes, enzyme immobilization, and surface charge engineering. Also reviewed is the protein engineering toolsets (directed evolution and rational design) to improve the biocatalysts' activity, stability and product selectivity in IL systems. The alliance between IL and LDEs offers a great opportunity for developing a biocatalytic route for lignin valorization.  相似文献   

4.
New developments in solid state fermentation: I-bioprocesses and products   总被引:7,自引:0,他引:7  
The last decade has witnessed an unprecedented increase in interest in solid state fermentation (SSF) for the development of bioprocesses, such as bioremediation and biodegradation of hazardous compounds, biological detoxification of agro-industrial residues, biotransformation of crops and crop-residues for nutritional enrichment, biopulping, and production of value-added products, such as biologically active secondary metabolites, including antibiotics, alkaloids, plant growth factors, etc. enzymes, organic acids, biopesticides, including mycopesticides and bioherbicides, biosurfactants, biofuel, aroma compounds, etc. SSF systems, which during the previous two decades were termed as a ‘low-technology’ systems, appear to be a promising one for the production of value-added ‘low volume-high cost’ products such as biopharmaceuticals. SSF processes offer potential advantages in bioremediation and biological detoxification of hazardous and toxic compounds. With the advent of biotechnological innovations, mainly in the area of enzyme and fermentation technology, many new avenues have opened for the application of SSF. This review discusses more recent developments in the area of SSF leading to the developments of bioprocesses and products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号