首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The biological role of ExgA (Exg1), a secretory β-1,3-exoglucanase of Aspergillus oryzae, and the expression pattern of the exgA (exg1) gene were analyzed. The exgA disruptant and the exgA-overexpressing mutant were constructed, and phenotypes of both mutants were compared. Higher mycelial growth rate and conidiation efficiency were observed for the exgA-overexpressing mutant than for the exgA disruptant when β-1,3-glucan was supplied as sole carbon source. On the other hand, no difference in phenotype was observed between them in the presence or absence of the inhibitors of cell wall β-glucan remodeling when grown with glucose. exgA Expression was induced in growth on solid surfaces such as filter membrane and onion inner skin. A combination of poor nutrition and mycelial attachment to a hydrophobic solid surface appears to be an inducing factor for exgA expression. These data suggest that ExgA plays a role in β-glucan utilization, but is not much involved in cell wall β-glucan remodeling.  相似文献   

2.
Glucans were isolated from the cell wall of the yeast (Y) and mycelial (M) forms of Paracoccidioides brasiliensis. The alkali-soluble glucan of the Y form had properties of alpha-1,3-glucan. The alkali-insoluble glucan of the M form was identified as a beta-glucan which contains a beta-(1 --> 3)-glycosidic linkage by infrared absorption spectrum, by effect of beta-1,3-glucanase, and by partial acid hydrolysis. The alkali-soluble glucans of the M form were a mixture of alpha- and beta-glucans and the ratio of alpha- to beta-glucan was variable, depending on the preparations.  相似文献   

3.
Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.  相似文献   

4.
In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a beta-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 beta-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley beta-glucan and lichenan (beta-1,3-1,4-glucan), but not cellulose (beta-1,4-glucan), curdlan (beta-1,3-glucan), or laminarin (beta-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the beta-1,4-glycosidic linkage of barley beta-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the beta-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 micromol of photons/m2 per s), a 12 h light (40 micromol of photons/m2 per s)/12 h dark cycle, cold stress (4 degrees C), and high light stress (200 micromol of photons/m2 per s). However, under salt stress (300-450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100-400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803.  相似文献   

5.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into beta-1,3-glucans which contained a significant proportion of beta-1,6-glycosidic linkages. When GDP-[U-14C]glucose was used as substrate only trace amounts of glucose were incorporated. Activity of beta-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. Beta-glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of beta-1,6-glycosidic linkages respectively. A marked decrease in the activity of beta-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

6.
We have recently demonstrated that the cell wall beta-glucan of Candida albicans could be solubilized by sodium hypochlorite, followed by dimethylsulfoxide-extraction (NaClO-DMSO method). In this study, applying this method to Aspergillus spp., we prepared mycelial cell wall beta-glucan and examined its physical properties and immunotoxicological activity. The acetone-dried mycelia of Aspergillus spp. were oxidized by the NaClO-DMSO method. An analysis of (13)C NMR spectra revealed the preparations to be composed of alpha-(1 --> 3) and beta-(1 --> 3)-D-glucan. Also, the proportion of alpha-(1 --> 3) and beta-(1 --> 3)-D-glucan varied. Furthermore, a solubilized Aspergillus beta-glucan (ASBG) was prepared from OX-Asp by urea-autoclave treatment. ASBG showed limulus activity similar to Candida solubilized beta-glucan (CSBG), and there was little difference in the activity of ASBG between various Aspergillus spp. ASBG affected the production of IL-8 by human peripheral blood mononuclear cells (PBMC). ASBG should be useful for analyzing the clinical role of beta-glucan.  相似文献   

7.
Two different strains of Trichoderma pseudokoningii (SE1 A8 and SE1 D81) and Trichoderma viride QM 9123 release into the medium different proportions of the total beta-glucosidase activity produced. This observation correlates with the degree of beta-1,3-glucanase binding to the cell wall found for each strain. DEAE-Sephadex ion-exchange chromatography revealed three peaks of beta-1,3-glucanase activity. These three enzymes (enzyme I, enzyme II, and enzyme III) differ in their extent of binding to the cell walls, their activity on isolated cell walls and Trichoderma beta-glucan, and their affinity for beta-glucan. Of these enzymes, enzyme II shows the largest variation in relative importance among the three strains and is located predominantly within the mural compartment. Enzyme II has the highest activity on and affinity for Trichoderma beta-glucan. Enzyme II is also the most active in releasing beta-glucosidase from cell walls of strain SE1 A8 (the strain excreting a high proportion of its beta-glucosidase into the culture fluid) as well as from strain SE1 D81 (little beta-glucosidase activity in the culture fluid). It is concluded that the action of beta-1,3-glucanase II on cell wall beta-glucan may be responsible for the in vivo release of cell wall bound beta-glucosidase into the culture fluid.  相似文献   

8.
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.  相似文献   

9.
10.
AIM: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. METHODS AND RESULTS: Chemical and enzymatic methods were used to determine levels of beta-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between beta-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of beta-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of beta-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.  相似文献   

11.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

12.
13.
14.
The biochemical and morphological changes of the yeastlike (Y) form to the mycelial (M) form of Paracoccidioides brasiliensis were examined. The main polysaccharide of hexoses of the Y-form cell wall was alpha-glucan, whereas the polysaccharides of the M-form cell wall were beta-glucan and galactomannan. The alpha-glucan of the Y form contained mainly alpha-(1 --> 3)-glycosidic linkage. The beta-glucan of the M form contained mainly beta-(1 --> 3)-glycosidic linkage with a few branches at C-6 position. The incorporation of (14)C-glucose into the cell wall glucans showed that synthesis of alpha-glucan decreased rapidly after the temperature of the culture was changed from 37 to 20 C. The synthesis of beta-glucan was augmented at an early stage of the morphological change. The M-form cell wall contained 12 times more disulfide linkage than the Y form. The cell-free extracts of the whole cell of the Y form had five times more protein disulfide reductase activity than the M form, whereas extracts of the M form contained five to eight times more beta-glucanase activity than the Y form. From these results, a hypothesis for the production of the M form from the Y form is proposed.  相似文献   

15.
Purified endoglucanases have been used to determine the composition of Schizosaccharomyces pombe cell wall. This structure has been traditionally studied after isolating its components (mannoproteins, alpha1,3-glucan, beta1,3-glucan, and a branched beta-glucan) with hot alkali. Instead, we sequentially removed the polysaccharides by digesting with endo-beta1,3-glucanase and with a novel endo-alpha1,3-glucanase (mutanase). After this gentle isolation we observed that a branched beta1,3-beta1,6-glucan is much more abundant than previously described. By scaling-up the new protocol we prepared large amounts of the highly branched glucan and determined its structural features. We have named this highly branched beta-glucan diglucan, reflecting its two types of beta linkages. We have also identified an insoluble endoglucanase-resistant type of 1,3-linked glucan present in S. pombe cell walls. We redefined the wall composition of S. pombe vegetative cells by this new method. Finally, to demonstrate its application, we determined the cell wall composition of known mutant strains.  相似文献   

16.
Verticillium biguttatum, a mycoparasite of the ubiquitous soil-borne plant pathogen Rhizoctonia solani, excreted chitinase and beta-1,3-glucanase into liquid medium when grown on laminarin and chitin, respectively. Neither chitinase nor beta-1,3-glucanase was produced by the mycoparasite when grown on cell walls of two isolates of R. solani representing anastomosis groups (AG)-3 and AG-8. Extracellular protease was induced by growth on cell walls of the pathogen, whereas beta-1,3-glucanase and chitinase were produced bound to the cell wall of V. biguttatum. This is the first report of chitinase, beta-1,3-glucanase and protease production by V. biguttatum. These enzymes may play a previously unforeseen role in dissolving and penetrating the cell walls of R. solani.  相似文献   

17.
Plant beta-1,3-glucanases (beta-1,3-Gs) (E.C. 3.2.1.39) comprise large, highly complex gene families involved in pathogen defense as well as a wide range of normal developmental processes. In spite of previous phylogenetic analyses that classify beta-1,3-Gs by sequence relatedness, the functional evolution of beta-1,3-Gs remains unclear. Here, expression and phylogenetic analyses have been integrated in order to investigate patterns of functional divergence in the Arabidopsis beta-1,3-G gene family. Fifty beta-1,3-G genes were grouped into expression classes through clustering of microarray data, and functions were inferred based on knowledge of coexpressed genes and existing literature. The resulting expression classes were mapped as discrete states onto a phylogenetic tree and parsimony reconstruction of ancestral expression states was performed, providing a model of expression divergence. Results showed a highly nonrandom distribution of developmental expression states in the phylogeny (P = 0.0002) indicating a significant degree of coupling between sequence and developmental expression divergence. A weaker, yet significant level of coupling was found using stress response data, but not using hormone-response or pathogen-response data. According to the model of developmental expression divergence, the ancestral function was most likely involved in cell division and/or cell wall remodeling. The associated expression state is widely distributed in the phylogeny, is retained by over 25% of gene family members, and is consistent with the known functions of beta-1,3-Gs in distantly related species and gene families. Consistent with previous hypotheses, pathogenesis-related (PR) beta-1,3-Gs appear to have evolved from ancestral developmentally regulated beta-1,3-Gs, acquiring PR function through a number of evolutionary events: divergence from the ancestral expression state, acquisition of pathogen/stress-responsive expression patterns, and loss of the C-terminal region including the glycosylphosphatidylinisotol (GPI)-anchoring site thus allowing for extracellular secretion.  相似文献   

18.
A wall-active, amphophilic antibiotic aculeacin A significantly but incompletely inhibited in vitro the activity of beta-(1,3)glucan synthase prepared from highly susceptible yeasts Saccharomyces cerevisiae and Candida albicans. In contrast, comparable cell-free preparations from S. cerevisiae active in chitin synthase or mannan synthase were insensitive to the antibiotic, suggesting selectivity of its action in synthesis of the yeast cell wall. An electron microscopic study of the effects of aculeacin A at 0.31 micrograms/ml, the optimally active concentration, on osmotically stabilized C. albicans cells revealed morphological alterations in both cell walls and cell membranes. Deformation in contour and derangement of the layered structure of the cell wall were prominent. In addition, massive fibrous material of beta-glucan-like microfibrils was occasionally extruded from the cell surface. Accompanying this effect on the cytology of the cell wall, ultrastructural and functional impairment of the cell membrane was demonstrated by transmission and freeze-fracture electron microscopic techniques. These data suggest that aculeacin A affects synthesis of the yeast cell wall through not only selective blockage of beta-(1,3)glucan synthase, as a result of a primary interaction with the cell membrane, but also inhibition of the fabrication of beta-glucan or other wall components into well-organized cell walls.  相似文献   

19.
The polysaccharidic effect of a purified 1,3-beta-glucanase, a purified beta-glucosidase, and of partially purified endo-1,3-beta-glucanase from autolysed Penicillium oxalicum cultures on cell wall isolate fractions from the same fungus were studied. Fractionation of 5-day-old cell wall gave rise to a series of fractions that were identified using infrared spectrophotometry. The fractions used were: F1, an alpha-glucan; F3, a beta-glucan; F4, a chitin-glucan; and F4b, a beta-glucan. The fractions were incubated with each of the enzymes and with a mixture of equal parts of the three enzymes and the products of the enzymatic hydrolysis were analyzed after 96 h incubation. The enzymes were found to degrade fraction F4b (beta-glucan); the greatest degree of hydrolysis was reached when the three enzymes were used together, suggesting the need for synergic action by these enzymes in the cell wall degradation process.  相似文献   

20.
Candida albicans RHO1 is required for cell viability in vitro and in vivo   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, Rho1p plays an important role in cell wall integrity by regulating beta-1,3-glucan synthase, Pkc1p and the actin cytoskeleton. To determine the physiological role of Rho1p in the dimorphic fungus Candida albicans, the major human fungal pathogen, we constructed mutants that conditionally express Rho1p from the glucose-repressible phosphoenolpyruvate carboxykinase promoter (pPCK1). We examined the growth of these cells in a range of conditions. Depletion of Rho1p from yeast cells resulted in cell death, lysis, and aggregation. The Rho1p conditional mutant was inviable on 10% serum indicating that Rho1p was also required for hyphal viability. Furthermore, in a mouse model of systemic candidiasis, strains dependent on pPCK1-driven RHO1 expression failed to colonise the kidneys and establish disease, suggesting that the level of glucose in serum was sufficient to repress the pPCK1 and that Rho1p-depleted strains were inviable within the host. Therefore, Rho1p is essential for the viability of C. albicans in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号