首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of granule formation in upflow anaerobic sludge blanket (UASB) reactors was studied using oligonucleotide hybridization probes. Two laboratory-scale UASB reactors were inoculated with sieved primary anaerobic digester sludge from a municipal wastewater treatment plant and operated similarly except that reactor G was fed glucose, while reactor GP was fed glucose and propionate. Size measurements of cell aggregates and quantification of different populations of methanogens with membrane hybridization targeting the small-subunit ribosomal RNA demonstrated that the increase in aggregate size was associated with an increase in the abundance of Methanosaeta concilii in both reactors. In addition, fluorescence in situ hybridization showed that the major cell components of small aggregates collected during the early stages of reactor startup were M. concilii cells. These results indicate that M. concilii filaments act as nuclei for granular development. The increase in aggregate size was greater in reactor GP than in reactor G during the early stages of startup, suggesting that the presence of propionate-oxidizing syntrophic consortia assisted the formation of granules. The mature granules formed in both reactors exhibited a layered structure with M. concilii dominant in the core, syntrophic consortia adjacent to the core, and filamentous bacteria in the surface layer. The excess of filamentous bacteria caused delay of granulation, which was corrected by increasing shear through an increase of the recycling rate.  相似文献   

2.
Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and mumax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor.  相似文献   

3.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes.The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82%and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated with Methanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together with M. concilii.  相似文献   

4.
Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD concentration of raw leachate. To prevent free ammonia inhibition, influent pH was reduced to 4.5 after Day 181 and consequently COD removal efficiencies above 80% were achieved in all reactors. However, the anaerobic filter and hybrid bed reactor were generally found slightly more efficient and stable than the UASB reactor. In addition to conventional anaerobic reactor control parameters, the complementary techniques of denaturing gradient gel electrophoresis (DGGE), cloning and fluorescent in situ hybridization (FISH) were used to identify and compare the microbial profiles in the reactors at Day 830. Molecular analyses revealed that acetoclastic Methanosaeta species were prevalent in all reactors and configuration did not have an impact on microbial diversity in the long-term.  相似文献   

5.
Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (± 0.19) kg-N m−3 d−1 than the reactor initiated as the partial nitrifying reactor (0.23 (± 0.16) kg-N m−3 d−1). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor.  相似文献   

6.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/ COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite  相似文献   

7.
A BSTRACTTo evaluate the role of Methanosaeta spp. in a variety of anaerobic environments, small-subunit rRNA targeted oligonucleotide hybridization probes were developed and experimentally characterized. The probes were designed to be genus specific for Methanosaeta and species specific for Methanosaeta concilii and Methanosaeta thermophila. The temperature of dissociation was determined for each probe. Probe specificities were determined using a diverse collection of Archaea and through an evaluation of probe nesting using samples from a variety of anaerobic bioreactors. Cell fixation and hybridization conditions for fluorescence in situ hybridizations were also evaluated. Although permeability of methanogens was variable, M. concilii cells could be permeabilized using a range of paraformaldehyde and ethanol based fixation conditions. Using the newly designed probes together with previously designed probes for methanogens, it was determined that Methanosaeta spp. were the dominant aceticlastic methanogens in a variety of anaerobic bioreactors when acetate concentrations were low. Their levels were higher in bioreactors with granular sludge than in those with flocculent sludge. In lab-scale upflow anaerobic sludge blanket reactors, the levels of M. concilii rRNA were as high as 30% of the total rRNA.  相似文献   

8.
Song J  An D  Ren N  Zhang Y  Chen Y 《Bioresource technology》2011,102(23):10875-10880
The microbial structure and kinetic characteristics of the hydrogen producing strains in two fermentative continuous stirred-tank reactors (CSTRs) were studied by controlling pH and oxidation and reduction potential (ORP). The fluorescence in situ hybridization (FISH) tests were conducted to investigate the fermentative performance of Clostridium histolyticum (C. histolyticum), Clostridium lituseburense (C. lituseburense) and Enterobacteriaceae. The experimental results showed that in ethanol-type reactor 1#, the relative abundance of the strains was 48%, 30% and 22%. Comparatively, the relative abundance in butyric acid-type reactor 2# was 24%, 55% and 19% with butyric acids and hydrogen as the main products. The kinetic results indicated that the hydrogen yield coefficients YP/X in both reactors were 8.357 and 5.951 l-H2/g, while the coefficients of the cellular yield were 0.0268 and 0.0350 g-Cell/g, respectively. At the same biomass, the hydrogen yield in ethanol-type reactors was more than that in butyric acid reactors. However, the cellular synthesis rate in ethanol-type reactors was low when the same carbon source was used.  相似文献   

9.
Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors.  相似文献   

10.
Three continuous stirred-tank reactors (CSTRs) were used for H(2) production from molasses wastewater at influent pH of 6.0-6.5 (reactor A), 5.5-6.0 (reactor B), or 4.0-4.5 (reactor C). After operation for 28 days, the microbial community formed ethanol type (C), propionate type (A) and ethanol-butyrate-mixed type (B) fermentation. The H(2) production rate was the highest for ethanol type fermentation, 0.40 l (g VSS)(-1) day(-1) or 0.45 l H(2) (g COD removed)(-1). Microbial community dynamics and diversity were analysed using double-gradient denaturing gradient gel electrophoresis (DG-DGGE). Denaturing gradient gel electrophoresis profiles indicated that the community structures changed quickly in the first 14 days. Phylogenetic analysis indicated that the dominant bacterial groups were low G+C Gram-positive bacteria, Bacteroides, gamma-Proteobacteria and Actinobacteria; alpha-Proteobacteria, beta-Proteobacteria, delta-Proteobacteria and Spirochaetes were also presented as minor groups in the three reactors. H(2)-producing bacteria were affiliated with Ethanoligenens, Acetanaerobacterium, Clostridium, Megasphaera, Citrobacter and Bacteroides. An ethanol-based H(2)-producing bacterium, Ethanoligenens harbinense CGMCC1152, was isolated from reactor C and visualized using fluorescence in situ hybridization (FISH) to be 19% of the eubacteria in reactor C. In addition, isoenzyme activity staining for alcohol dehydrogenase (ADH) supported that the majority of ethanol-producing bacteria were affiliated with Ethanoligenens in the microbial community.  相似文献   

11.
Partial nitrification of ammonium to nitrite under oxic conditions (nitritation) is a critical process for the effective use of alternative nitrogen removal technologies from wastewater. Here we investigated the conditions which promote establishment of a suitable microbial community for performing nitritation when starting from regular sewage sludge. Reactors were operated in duplicate under different conditions (pH, temperature, and dilution rate) and were fed with 50 mM ammonium either as synthetic medium or as sludge digester supernatant. In all cases, stable nitritation could be achieved within 10 to 20 days after inoculation. Quantitative in situ hybridization analysis with group-specific fluorescent rRNA-targeted oligonucleotides (FISH) in the different reactors showed that nitrite-oxidizing bacteria of the genus Nitrospira were only active directly after inoculation with sewage sludge (up to 4 days and detectable up to 10 days). As demonstrated by quantitative FISH and restriction fragment length polymorphism (RFLP) analyses of the amoA gene (encoding the active-site subunit of the ammonium monooxygenase), the community of ammonia-oxidizing bacteria changed within the first 15 to 20 days from a more diverse set of populations consisting of members of the Nitrosomonas communis and Nitrosomonas oligotropha sublineages and the Nitrosomonas europaea-Nitrosomonas eutropha subgroup in the inoculated sludge to a smaller subset in the reactors. Reactors operated at 30 degrees C and pH 7.5 contained reproducibly homogeneous communities dominated by one amoA RFLP type from the N. europaea-N. eutropha group. Duplicate reactors at pH 7.0 developed into diverse communities and showed transient population changes even within the ammonia oxidizer community. Reactors at pH 7.5 and 25 degrees C formed communities that were indistinguishable by the applied FISH probes but differing in amoA RFLP types. Communities in reactors fed with sludge digester supernatant exhibited a higher diversity and were constantly reinoculated with ammonium oxidizers from the supernatant. Therefore, such systems could be maintained at a higher dilution rate (0.75 day(-1) compared to 0.2 day(-1) for the synthetic wastewater reactors). Despite similar reactor performance with respect to chemical parameters, the underlying community structures were different, which may have an influence on stability during perturbations.  相似文献   

12.
Interpreting the large amount of data generated by rapid profiling techniques, such as T-RFLP, DGGE, and DNA arrays, is a difficult problem facing microbial ecologists. This study compares the ability of two very different ordination methods, principal component analysis (PCA) and self-organizing map neural networks (SOMs), to analyze 16S-DNA terminal restriction-fragment length polymorphism (T-RFLP) profiles from microbial communities in glucose-fed methanogenic bioreactors during startup and changes in operational parameters. Our goal was not only to identify which samples were similar, but also to decipher community dynamics and describe specific phylotypes, i.e., phylogenetically similar organisms, that behaved similarly in different reactors. Fifteen samples were taken over 56 volume changes from each of two bioreactors inoculated from river sediment (S2) and anaerobic digester sludge (M3) and from a well-established control reactor (R1). PCA of bacterial T-RFLP profiles indicated that both the S2 and M3 communities changed rapidly during the first nine volume changes, and then became relatively stable. PCA also showed that an HRT of 8 or 6 days had no effect on either reactor communtity, while an HRT of 2 days changed community structure significantly in both reactors. The SOM clustered the terminal restriction fragments according to when each fragment was most abundant in a reactor community, resulting in four clearly discernible groups. Thirteen fragments behaved similarly in both reactors, eight of which composed a significant proportion of the microbial community as judged by the relative abundance of the fragment in the T-RFLP profiles. Six Bacteria terminal restriction fragments shared between the two communities matched cloned 16S rDNA sequences from the reactors related to Spirochaeta, Aminobacterium, Thermotoga, and Clostridium species. Convergence also occurred within the acetoclastic methanogen community, resulting in a predominance of Methanosarcina siciliae-related organisms. The results demonstrate that both PCA and SOM analysis are useful in the analysis of T-RFLP data; however, the SOM was better at resolving patterns in more complex and variable data than PCA ordination.  相似文献   

13.
FISH荧光原位杂交技术在污水生物脱氮研究中的应用   总被引:3,自引:0,他引:3  
简要介绍了荧光原位杂交(FISH)的基本原理,着重讨论近年来该技术在污水生物脱氮研究中的应用现状和特点。研究表明:FISH技术能够准确地表现污水处理反应器中脱氮菌群落的类型和结构形态。但在关于SRT、DO、C/N比等工艺参数的变化对脱氮反应器中微生物类型、数量和结构的影响等方面的研究还有待深入。FISH技术与PCR—DGGE和16SrRNA/rDNA序列分析等技术相结合是对污水处理构筑物中生物脱氮群落深入研究的发展方向。  相似文献   

14.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of CODsoluble/ CODtotal were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated withMethanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together withM. concilii.  相似文献   

15.
The acidification of mesophilic (30 degrees C) methanol-fed upflow anaerobic sludge bed (UASB) reactors induced by cobalt deprivation from the influent was investigated by coupling the reactor performance (pH 7.0; organic loading rate 4.5 g COD . L(-1) . d(-1)) to the microbial ecology of the bioreactor sludge. The latter was investigated by specific methanogenic activity (SMA) measurements and fluorescence in situ hybridization (FISH) to quantify the abundance of key organisms over time. This study hypothesized that under cobalt limiting conditions, the SMA on methanol of the sludge gradually decreases, which ultimately results in methanol accumulation in the reactor effluent. Once the methanol accumulation surpasses a threshold value (about 8.5 mM for the sludge investigated), reactor acidification occurs because acetogens outcompete methylothrophic methanogens at these elevated methanol concentrations. Methanogens present in granular sludge at the time of the acidification do not use methanol as the direct substrate and are unable to degrade acetate. Methylotrophic/acetoclastic methanogenic activity was found to be lost within 10 days of reactor operation, coinciding with the disappearance of the Methanosarcina population. The loss of SMA on methanol can thus be used as an accurate parameter to predict reactor acidification of methanol-fed UASB reactors operating under cobalt limiting conditions.  相似文献   

16.
Conventional studies of the optimum growth conditions for methanogens (methane-producing, obligate anaerobic archaea) are typically conducted with serum bottles or bioreactors. The use of microfluidics to culture methanogens allows direct microscopic observations of the time-integrated response of growth. Here, we developed a microbioreactor (microBR) with approximately 1-microl microchannels to study some optimum growth conditions for the methanogen Methanosaeta concilii. The microBR is contained in an anaerobic chamber specifically designed to place it directly onto an inverted light microscope stage while maintaining a N2-CO2 environment. The methanogen was cultured for months inside microchannels of different widths. Channel width was manipulated to create various fluid velocities, allowing the direct study of the behavior and responses of M. concilii to various shear stresses and revealing an optimum shear level of approximately 20 to 35 microPa. Gradients in a single microchannel were then used to find an optimum pH level of 7.6 and an optimum total NH4-N concentration of less than 1,100 mg/liter (<47 mg/liter as free NH3-N) for M. concilii under conditions of the previously determined ideal shear stress and pH and at a temperature of 35 degrees C.  相似文献   

17.
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and are occasionally released into wastewater streams. This work evaluated the effects on activated-sludge reactor functions of a 3-chloroaniline (3-CA) pulse and bioaugmentation by inoculation with the 3-CA-degrading strain Comamonas testosteroni I2 gfp. Changes in functions such as nitrification, carbon removal, and sludge compaction were studied in relation to the sludge community structure, in particular the nitrifying populations. Denaturing gradient gel electrophoresis (DGGE), real-time PCR, and fluorescent in situ hybridization (FISH) were used to characterize and enumerate the ammonia-oxidizing microbial community immediately after a 3-CA shock load. Two days after the 3-CA shock, ammonium accumulated, and the nitrification activity did not recover over a 12-day period in the nonbioaugmented reactors. In contrast, nitrification in the bioaugmented reactor started to recover on day 4. The DGGE patterns and the FISH and real-time PCR data showed that the ammonia-oxidizing microbial community of the bioaugmented reactor recovered in structure, activity, and abundance, while the number of ribosomes of the ammonia oxidizers in the nonbioaugmented reactor decreased drastically and the community composition changed and did not recover. The settleability of the activated sludge was negatively influenced by the 3-CA addition, with the sludge volume index increasing by a factor of 2.3. Two days after the 3-CA shock in the nonbioaugmented reactor, chemical oxygen demand (COD) removal efficiency decreased by 36% but recovered fully by day 4. In contrast, in the bioaugmented reactor, no decrease of the COD removal efficiency was observed. This study demonstrates that bioaugmentation of wastewater reactors to accelerate the degradation of toxic chlorinated organics such as 3-CA protected the nitrifying bacterial community, thereby allowing faster recovery from toxic shocks.  相似文献   

18.
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and are occasionally released into wastewater streams. This work evaluated the effects on activated-sludge reactor functions of a 3-chloroaniline (3-CA) pulse and bioaugmentation by inoculation with the 3-CA-degrading strain Comamonas testosteroni I2 gfp. Changes in functions such as nitrification, carbon removal, and sludge compaction were studied in relation to the sludge community structure, in particular the nitrifying populations. Denaturing gradient gel electrophoresis (DGGE), real-time PCR, and fluorescent in situ hybridization (FISH) were used to characterize and enumerate the ammonia-oxidizing microbial community immediately after a 3-CA shock load. Two days after the 3-CA shock, ammonium accumulated, and the nitrification activity did not recover over a 12-day period in the nonbioaugmented reactors. In contrast, nitrification in the bioaugmented reactor started to recover on day 4. The DGGE patterns and the FISH and real-time PCR data showed that the ammonia-oxidizing microbial community of the bioaugmented reactor recovered in structure, activity, and abundance, while the number of ribosomes of the ammonia oxidizers in the nonbioaugmented reactor decreased drastically and the community composition changed and did not recover. The settleability of the activated sludge was negatively influenced by the 3-CA addition, with the sludge volume index increasing by a factor of 2.3. Two days after the 3-CA shock in the nonbioaugmented reactor, chemical oxygen demand (COD) removal efficiency decreased by 36% but recovered fully by day 4. In contrast, in the bioaugmented reactor, no decrease of the COD removal efficiency was observed. This study demonstrates that bioaugmentation of wastewater reactors to accelerate the degradation of toxic chlorinated organics such as 3-CA protected the nitrifying bacterial community, thereby allowing faster recovery from toxic shocks.  相似文献   

19.
In this study sludge wash-out was evaluated as a strategy to start-up the Anammox process in order to establish it in a shorter period of time. Sludge from a domestic wastewater treatment plant (WTP) was used to seed two (RI and RII) anaerobic sequencing batch reactors (ASBR). During the start-up period RI was operated as a continuous stirred tank reactor (CSTR) using a dilution rate of 0.2 d−1, which promoted the sludge wash-out. After this period, the remaining sludge was retained in the reactor. The reactor RII was operated as an ASBR throughout the study period with a high cell retention. The performance of the two reactors in terms of nitrogen removal was compared over a period of 380 days. During the last RI operation phase the specific nitrogen removal rate increased exponentially, attaining values of 85 mg N/g TSS d. However, a rate of 190 mg N/g TSS d in the batch test under optimal conditions was achieved. The specific nitrogen removal rate remained almost constant for RII with a mean value of 6 mg N/g TSS d being observed during the operation period. The rate for the RII batch test was 20 mg N/g TSS d. These results confirm that the higher total suspended solids (TSS) in RII (reactor with high cell retention) was not effective in terms of N removal improvement. Anammox-like bacteria were found using fluorescence in situ hybridization (FISH) in reactor RI after 225 days and a new Anammox species was identified.  相似文献   

20.
Four fluidized bed reactors were used to evaluate single-and separated-phase anaerobic treatments of a high strength wastewater. Two reactors were fed with a synthetic wastewater, containing glucose as the primary carbon source, with a COD of 1.2 x 10(4) mg/L while the remaining pair were fed with a wastewater with a COD of 6000 mg/L. AT each influent strength, one fluidized bed reactor was operated as a single-phase system while the other was operated as a methanogenic reactor which was preceded by an acidification reactor in a separatedphase system. The reactors were operated under steady-state and variable process conditions. The separated-phase system consistently gave a better quality effluent with lower effluent suspended solids and total COD, and the methane yield was also improved. Under variable process conditions, the separated-phase system was inherently more stable and recovered more rapidly following a shock loading. Propionate and acetate degradation studies indicated that the biomass in the methanogenic fluidized beds of the two-phase systems was more adapted to volatile acid degradation than the biomass in the single-phase fluidized beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号