首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.  相似文献   

2.
The p38 mitogen activated kinase (MAPK) signaling pathway plays an essential role in regulating many cellular processes, including inflammation, cell differentiation, and cell death. Here, we report that the hepatitis C virus (HCV) core inhibits the Fas-mediated p38 signaling pathway. The Fas-mediated p38 activation is suppressed in core-expressing HepG2 cell lines, as well as in the hepatocytes of transgenic mice. In addition, core protein blocked the Fas-mediated activation of apoptosis signal-regulating kinase 1 (ASK1), a major upstream MAPKKK of p38. Treatment of a specific p38 inhibitor (SB203580) or overexpression of a kinase-defective mutant, ASK1 (K709R), promoted Fas-mediated cell death in HepG2 cells. This suggests that the p38 and ASK1 activation is required for cell survival against Fas-mediated cell death. In addition, we observed that the HCV core protein enhances Fas-mediated liver injury and lethality in transgenic mice. Collectively, our findings suggest that the HCV core inhibits the Fas-mediated p38 signaling pathway, which results in accelerated Fas-mediated cell death.  相似文献   

3.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. However, the mechanism of how different upstream MAP2Ks and MAP3Ks specifically contribute to p38 activation in response to different stimuli is still not clearly understood. By using double-stranded RNA-mediated interference (RNAi) in Drosophila cells, we demonstrate that D-MKK3 is a major MAP2K responsible for D-p38 activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the other hand, maximal activation of D-p38 by NaCl requires the expression of four MAP3Ks.  相似文献   

4.
MEK7-dependent activation of p38 MAP kinase in keratinocytes   总被引:2,自引:0,他引:2  
Previous studies suggest that a PKC/Ras/MEKK1 cascade regulates involucrin (hINV) gene expression in human epidermal keratinocytes. MEK7, which is expressed in epidermis, has been identified as a member of this cascade (Efimova, T., LaCelle, P., Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395 and Efimova, T., and Eckert, R. L. (2000) J. Biol. Chem. 275, 1601-1607). However, the kinase that functions downstream of MEK7 has not been identified. Our present studies show that MEK7 expression in keratinocytes markedly activates p38alpha and modestly activates JNK. Activation of p38 MAPK by MEK7 is a novel finding, as previous reports have assigned MEK7 as a JNK regulator. We also demonstrate that this regulation is physiologically important, as the p38alpha- and JNK-dependent activities regulate hINV promoter activity and expression of the endogenous hINV gene.  相似文献   

5.
Although hepatic myofibroblast migration plays a key role in the liver's injury response, the signal transduction pathways mediating the migration of this cell type are uncertain. Recently, we reported that lysophosphatidic acid (LPA) stimulates the migration of hepatic myofibroblasts. The goal of this study was to test the hypothesis that rho and p38 MAP kinase signaling pathways mediate LPA-stimulated hepatic myofibroblast migration. We measured migration, myosin regulatory light chain and p38 MAP kinase phosphorylation, and contractile force generation by human hepatic myofibroblasts. LPA stimulated migration in a dose-dependent and saturable manner that was partially blocked by Y-27632, a rho-associated kinase inhibitor, as well as by SB-202190, a p38 MAP kinase inhibitor. LPA also induced myosin regulatory light chain phosphorylation and contractile force generation in a Y-27632 dependent, and SB-202190 independent fashion. Moreover, LPA stimulated a dose-dependent and saturable phosphorylation of p38 MAP kinase, which was not altered by Y-27632 or C3 transferase, a rho inactivator. These novel results suggest that LPA stimulates hepatic myofibroblast migration via distinct pathways that signal through rho and p38 MAP kinase.  相似文献   

6.
The mammalian mitogen-activated protein (MAP) kinase kinase kinase apoptosis signal-regulating kinase 1 (ASK1) is a pivotal component in cytokine- and stress-induced apoptosis. It also regulates cell differentiation and survival through p38 MAP kinase activation. Here we show that Ca2+ signalling regulates the ASK1–p38 MAP kinase cascade. Ca2+ influx evoked by membrane depolarization in primary neurons and synaptosomes induced activation of p38, which was impaired in those derived from ASK1-deficient mice. Ca2+/calmodulin-dependent protein kinase type II (CaMKII) activated ASK1 by phosphorylation. Moreover, p38 activation induced by the expression of constitutively active CaMKII required endogenous ASK1. Thus, ASK1 is a critical intermediate of Ca2+ signalling between CaMKII and p38 MAP kinase.  相似文献   

7.
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.  相似文献   

8.
p38 mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth. However, the underlying molecular mechanism(s) remains unclear. Here, we demonstrate that phospholipase D2 (PLD2) mediates p38 signaling in neurite outgrowth. Stimulation of rat pheochromocytoma PC12 cells with nerve growth factor activated PLD2 and augmented neurite outgrowth, both of which were inhibited by pharmacological suppression of p38. Overexpression of constitutively active MAP kinase kinase 6 (MKK6-CA) activated coexpressed PLD2 in PC12 and mouse neuroblastoma N1E-115 cells. Overexpression of wild-type PLD2 in these cells strongly augmented the neurite outgrowth induced by MKK6-CA, whereas lipase-deficient PLD2 suppressed it. These findings provide evidence that PLD2 functions as a downstream molecule of p38 in the neurite outgrowth signaling cascade.  相似文献   

9.
Polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), are widespread in the environment and cause untoward effects, including carcinogenesis, in mammalian cells. However, the molecular mechanism of apoptosis by BaP is remained to be elusive. Pharmacological inhibition of p38 kinase markedly inhibited the BaP-induced cytotoxicity, which was proven as apoptosis characterized by an increase in sub-G(0)/G(1) fraction of DNA content, ladder-pattern fragmentation of genomic DNA, and catalytic activation of caspase-3 with PARP cleavage. Our data also demonstrated that activation of caspase-3 was accompanied with activation of caspase-9 and mitochondrial dysfunction, which was also apparently suppressed by pretreatment with p38 kinase inhibitors. Also, pharmacological inhibition of p38 markedly inhibited the phosphorylation, accumulated expression, and transactivation activity of p53 in BaP-treated cells. Adenoviral overexpression of human p53 (wild-type) further augmented in increase of PARP cleavage and the sub-G(0)/G(1) fraction of DNA content. Furthermore, p53 mediated apoptotic activity in BaP-treated cells was inhibited by p38 kinase inhibitor. The current data collectively indicate that BaP induces apoptosis of Hepa1c1c7 cells via activation of p53-related signaling, which was, in part, regulated by p38 kinase.  相似文献   

10.
11.
12.
13.
Ischemic preconditioning has been shown to improve liver resistance to hypoxia/reperfusion damage. A signal pathway involving A(2A)-adenosine receptor, G(i)-proteins, protein kinase C and p38 MAP kinase is responsible for the development of hypoxic preconditioning in hepatocytes. However, the coupling of this signal pathway with the mechanisms responsible for cytoprotection is still unknown. We have observed that stimulation of A(2A)-adenosine receptors or of p38 MAPK by CGS21680 or anisomycin, respectively, appreciably reduced intracellular acidosis and Na(+) accumulation developing during hypoxia. These effects were reverted by p38 MAPK inhibitor SB203580 as well as by blocking vacuolar proton ATPase with bafilomycin A(1). SB203580 and bafilomycin A(1) also abolished the cytoprotective action exerted by both CGS21680 and anisomycin. We propose that the stimulation of p38 MAPK by preconditioning might increase hepatocyte resistance to hypoxia by activating proton extrusion through vacuolar proton ATPase, thus limiting Na(+) overload promoted by Na(+)-dependent acid buffering systems.  相似文献   

14.
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.  相似文献   

15.
Human immunodeficiency virus (HIV) infection is associated with a surprisingly high frequency of myocardial dysfunction. Potential mechanisms include direct effects of HIV, indirect effects mediated by cytokines, or a combination. We have previously reported that interleukin-1beta (IL-1beta) (500 U/ml) alone induced nitric oxide (NO) production by neonatal rat cardiac myocytes (CM). Effects of the HIV-1 envelope, glycoprotein120 (gp120), on inducible NO synthase (iNOS) in CM have not been previously reported. Unlike IL-1beta, recombinant HIV-gp120 (1 microgram/ml) alone failed to enhance NO production in CM (0.5 +/- 0.4 vs. 0.4 +/- 0.5 micromol/1.25 x 10(5) cells/48 h, gp120 vs. control, respectively; n = 12, P = not significant). However, the addition of gp120 to IL-1beta significantly enhanced iNOS mRNA expression (70 +/- 1.5 vs. 26 +/- 2.4 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), iNOS protein synthesis (42 +/- 1.4 vs. 18 +/- 0.8 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), and NO production (NO(2)(-)) (6.6 +/- 0.6 vs. 4.1 +/- 0.8 micromol/1.25 x 10(5) cells/48 h, IL-1beta + gp120 vs. IL-1beta, respectively; n = 12, P 相似文献   

16.
In this study, we examined the mechanism by which CD38 cleavage is regulated through the mitogen-activated protein (MAP) kinases after stimulation by fMLP and interleukin-8 (IL-8) in neutrophils. Both fMLP and IL-8 increased chemotaxis and decreased CD38 protein in neutrophils, but did not change CD38 mRNA levels. Both fMLP and IL-8 increased CD38 in supernatants, which was inhibitable with PMSF. fMLP stimulation resulted in phosphorylation of p38 MAP kinase and p42/44 MAP kinase (ERK). SB20358, a p38 MAP kinase inhibitor, down-regulated neutrophil chemotaxis. Conversely, PD98059, an ERK inhibitor, did not influence chemotaxis to either agonist. The addition of SB20358 blocked the decrease of CD38 on neutrophils and the increase in supernatants induced by fMLP or IL-8, whereas PD98059 did not. These findings suggest that CD38-mediated chemotaxis to fMLP or IL-8 is characterized by proteolytic cleavage of CD38 and signaling through p38 MAP kinase. Activation of the protease for cleavage appears to be a postreceptor event that is dependent on p38 MAP kinase signaling.  相似文献   

17.
We have shown recently that interleukin (IL)-2 activates the mitogen-activated protein (MAP) kinase family members p38 (HOG1/stress-activated protein kinase II) and p54 (c-Jun N-terminal kinase/stress-activated protein kinase I). Furthermore, the p38 MAP kinase inhibitor SB203580 inhibited IL-2-driven T cell proliferation, suggesting that p38 MAP kinase might be involved in mediating proliferative signals. In this study, using transfected BA/F3 cell lines, it is shown that both the acidic domain and the membrane-proximal serine-rich region of the IL-2Rbeta chain are required for p38 and p54 MAP kinase activation and that, as for p42/44 MAP kinase, this activation requires the Tyr338 residue of the acidic domain, the binding site for Shc. It is well established that the acidic domain of the IL-2Rbeta chain is dispensable for IL-2-driven proliferation, and thus our observations suggest that neither p38 nor p54 MAP kinase activation is required for IL-2-driven proliferation of BA/F3 cells. In addition, the tetravalent guanylhydrazone inhibitor of proinflammatory cytokine production, CNI-1493, can block the activation of p54 and p38 MAP kinases by IL-2 but has no effect on IL-2-driven proliferation of BA/F3 cells, activated primary T cells, or a cytotoxic T cell line. Furthermore, our observations provide evidence for the existence of an additional, unknown target of the p38 MAP kinase inhibitor SB203580, the activation of which is essential for mitogenic signaling by IL-2.  相似文献   

18.
Hemodynamic load-induced cardiac p38 mitogen-activated protein kinase (MAPK) activation was studied in normotensive control Dahl rats (n = 10) and hypertensive Dahl rats with heart failure (n = 16). The isolated heart from each animal was stretched on a Langendorff apparatus at an equivalent diastolic wall stress, and the p38-MAPK activity of the left ventricular (LV) myocardium was analyzed by immunoprecipitation-kinase assay. Compared to the control hearts, the stretch-induced p38-MAPK activities were significantly decreased, and inversely correlated with the LV diameter (r = -0.73, P < 0.01). Chronic treatment with an angiotensin II AT1-receptor antagonist, valsartan (10 mg/kg/day), ameliorated cardiac function and remodeling process in the failing hearts, which was associated with an improvement of the p38-MAPK activities. Thus, the mechano-signal transduction of p38-MAPK pathway is downregulated in the failing hearts, along with progressive ventricular remodeling. The data also suggest that the beneficial effects of the AT1-receptor antagonists are potentially mediated by the restoration of cardiac growth-related signal transduction.  相似文献   

19.
As a second messenger, H2O2 generation and signal transduction is subtly controlled and involves various signal elements, among which are the members of MAP kinase family. The increasing evidences indicate that both MEK1/2 and p38-like MAP protein kinase mediate ABA-induced H2O2 signaling in plant cells. Here we analyze the mechanisms of similarity and difference between MEK1/2 and p38-like MAP protein kinase in mediating ABA-induced H2O2 generation, inhibition of inward K+ currents, and stomatal closure. These data suggest that activation of MEK1/2 is prior to p38-like protein kinase in Vicia guard cells.Key words: H2O2 signaling, ABA, p38-like MAP kinase, MEK1/2, guard cellAn increasing number of literatures elucidate that reactive oxygen species (ROS), especially H2O2, is essential to plant growth and development in response to stresses,14 and involves activation of various signaling events, among which are the MAP kinase cascades.13,5 Typically, activation of MEK1/2 mediates NADPH oxidase-dependent ROS generation in response to stresses,4,68 and the facts that MEK1/2 inhibits the expression and activation of antioxidant enzymes reveal how PD98059, the specific inhibitor of MEK1/2, abolishes abscisic acid (ABA)-induced H2O2 generation.6,8,9 It has been indicated that PD98059 does not to intervene on salicylic acid (SA)-stimulated H2O2 signaling regardless of SA mimicking ABA in regulating stomatal closure.2,6,8,10 Generally, activation of MEK1/2 promotes ABA-induced stomatal closure by elevating H2O2 generation in conjunction with inactivating anti-oxidases.Moreover, activation of plant p38-like protein kinase, the putative counterpart of yeast or mammalian p38 MAP kinase, has been reported to participate in various stress responses and ROS signaling. It has been well documented that p38 MAP kinase is involved in stress-triggered ROS signaling in yeast or mammalian cells.1113 Similar to those of yeast and mammals, many studies showed the activation of p38-like protein kinase in response to stresses in various plants, including Arabidopsis thaliana,1416 Pisum sativum,17 Medicago sativa18 and tobacco.19 The specific p38 kinase inhibitor SB203580 was found to modulate physiological processes in plant tissues or cells, such as wheat root cells,20 tobacco tissue21 and suspension-cultured Oryza sativa cells.22 Recently, we investigate how activation of p38-like MAP kinase is involved in ABA-induced H2O2 signaling in guard cells. Our results show that SB203580 blocks ABA-induced stomatal closure by inhibiting ABA-induced H2O2 generation and decreasing K+ influx across the plasma membrane of Vicia guard cells, contrasting greatly with its analog SB202474, which has no effect on these events.23,24 This suggests that ABA integrate activation of p38-like MAP kinase and H2O2 signaling to regulate stomatal behavior. In conjunction with SB203580 mimicking PD98059 not to mediate SA-induced H2O2 signaling,23,24 these results generally reveal that the activation of p38-like MAP kinase and MEK1/2 is similar in guard cells.On the other hand, activation of p38-like MAP kinase23,24 is not always identical to that of MEK1/28,25 in ABA-induced H2O2 signaling of Vicia guard cells. For example, H2O2- and ABA-induced stomatal closure was partially reversed by SB203580. The maximum inhibition of both regent-induced stomatal closure were observed at 2 h after treatment with SB203580, under which conditions the stomatal apertures were 89% and 70% of the control values, respectively. By contrast, when PD98059 was applied together with ABA or H2O2, the effects of both ABA- and H2O2-induced stomatal closure were completely abolished (Fig. 1). These data imply that the two members of MAP kinase family are efficient in H2O2-stimulated stomatal closure, but p38-like MAP kinase is less susceptive than MEK1/2 to ABA stimuli.Open in a separate windowFigure 1Effects of SB203580 and PD98059 on ABA- and H2O2-induced stomatal closure. The experimental procedure and data analysis are according to the previous publication.8,23,24It has been reported that ABA or NaCl activate p38 MAP kinase in the chloronema cells of the moss Funaria hygrometrica in 2∼10 min.26 Similar to this, SB203580 improves H2O2-inhibited inward K+ currents after 4 min and leads it to the control level (100%) during the following 8 min (Fig. 2). However, the activation of p38-like MAP kinase in response to ABA need more time, and only recovered to 75% of the control at 8 min of treatment (Fig. 2). These results suggest that control of H2O2 signaling is required for the various protein kinases including p38-like MAP kinase and MEK1/2 in guard cells,1,2,8,23,24 and the ABA and H2O2 pathways diverge further downstream in their actions on the K+ channels and, thus, on stomatal control. Other differences in action between ABA and H2O2 are known. For example, Köhler et al. (2001) reported that H2O2 inhibited the K+ outward rectifier in guard cells shows that H2O2 does not mimic ABA action on guard cell ion channels as it acts on the K+ outward rectifier in a manner entirely contrary to that of ABA.27Open in a separate windowFigure 2Effect of SB203580 on ABA- and H2O2-inhibited inward K+ currents. The experimental procedure and data analysis are according to the previous publication.24 SB203580 directs ABA- and H2O2-inactivated inward K+ currents across plasma membrane of Vicia guard cells. Here the inward K+ currents value is stimulated by −190 mV voltage.Based on the similarity and difference between PD98059 and SB203580 in interceding ABA and H2O2 signaling, we speculate the possible mechanism is that the member of MAP kinase family specially regulate signal event in ABA-triggered ROS signaling network,14 and the signaling model as follows (Fig. 3).Open in a separate windowFigure 3Schematic illustration of MAP kinase-mediated H2O2 signaling of guard cells. The arrows indicate activation. The line indicates enhancement and the bar denotes inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号