首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fourier-transform infrared (FT-IR) microspectroscopy was used to investigate both the chemical composition of, and the effects of an applied strain on, the structure of the Chara corallina cell wall. The inner layers of the cell wall are known to have a transverse cellulose orientation with a gradient through the thickness to longitudinal orientation in the older layers. In both the native state and following the removal of various biopolymers by a sequential extraction infrared dichroism was used to examine the orientation of different biopolymers in cell-wall samples subjected to longitudinal strain. In the Chara system, cellulose microfibrils were found to be aligned predominantly transverse to the long axis of the cell and became orientated increasingly transversely as longitudinal strain increased. Simultaneously, the pectic polysaccharide matrix underwent molecular orientation parallel to the direction of strain. Following extraction in CDTA, microfibrils were orientated transversely to the strain direction, and again the degree of transverse orientation increased with increasing strain. However, the pectic polysaccharides of the matrix were not detected in the dichroic difference spectra. After a full sequential extraction, the cellulose microfibrils, now with greatly reduced crystallinity, were detected in a longitudinal direction and they became orientated increasingly parallel to the direction of strain as it increased.  相似文献   

2.

Background and Aims

The production of multicellular gametangia in green plants represents an early evolutionary development that is found today in all land plants and advanced clades of the Charophycean green algae. The processing of cell walls is an integral part of this morphogenesis yet very little is known about cell wall dynamics in early-divergent green plants such as the Charophycean green algae. This study represents a comprehensive analysis of antheridium development and spermatogenesis in the green alga, Chara corallina.

Methods

Microarrays of cell wall components and immunocytochemical methods were employed in order to analyse cell wall macromolecules during antheridium development.

Key Results

Cellulose and pectic homogalacturonan epitopes were detected throughout all cell types of the developing antheridium including the unique cell wall protuberances of the shield cells and the cell walls of sperm cell initials. Arabinogalactan protein epitopes were distributed only in the epidermal shield cell layers and anti-xyloglucan antibody binding was only observed in the capitulum region that initially yields the sperm filaments. During the terminal stage of sperm development, no cell wall polymers recognized by the probes employed were found on the scale-covered sperm cells.

Conclusions

Antheridium development in C. corallina is a rapid event that includes the production of cell walls that contain polymers similar to those found in land plants. While pectic and cellulosic epitopes are ubiquitous in the antheridium, the distribution of arabinogalactan protein and xyloglucan epitopes is restricted to specific zones. Spermatogenesis also includes a major switch in the production of extracellular matrix macromolecules from cell walls to scales, the latter being a primitive extracellular matrix characteristic of green plants.  相似文献   

3.
    
A long alpha-helix in myosin head constitutes a lever arm together with light chains. It is known from X-ray crystallographic studies that the first three turns of this lever arm alpha-helix are inserted into the converter region of myosin. We previously showed that chimeric Chara myosin in which the motor domain of Chara myosin was connected to the lever arm alpha-helix of Dictyostelium myosin had motility far less than that expected for the motor domain of Chara myosin. Here, we replaced the inserted three turns of alpha-helix of Dictyostelium myosin with that of the Chara myosin and found that the replacement enhanced the motility 2.6-fold without changing the ATPase activity so much. The result clearly showed the importance of interaction between the converter region and the lever arm alpha-helix for the efficient motility of myosin.  相似文献   

4.
A three-layer artificial neural network (ANN) was constructed to predict the removal efficiency of Lanaset Red (LR) G on Chara contraria based on 2304 experimental sets. The effects of operating variables (particle size, adsorbent dosage, pH regimes, dye concentration, and contact time) were studied to optimize the sorption conditions of this dye. The operating variables were used as the input to the constructed neural network to predict the dye uptake at any time as the output. This adsorbent was characterized by FTIR. Pseudo second-order model was also fitted to the experimental data. According to values of error analyses and determinations coefficient, the ANN was more appropriate to describe this adsorption process. Result of this model indicated that pH regimes had the highest importance effect (49%) on the dye uptake.  相似文献   

5.
6.
Allelopathic activity of Chara aspera   总被引:3,自引:2,他引:3  
Allelopathic activity of Chara aspera was determined in agar diffusion assays using planktonic cyanobacteria as target organisms. Growth inhibition of cyanobacterial strains was observed in bioassays inoculated with living Chara aspera shoots as well as with 60% aqueous methanol extracts of Chara aspera. For further analysis, the methanol extract was fractionated into three parts: a lipophilic methanol – a butylmethylether-extract and a hydrophilic methanol extract. The bioassays indicated that major allelopathic activity was retained in the hydrophilic methanol – and the lipophilic butylmethylether-extract. Separation of the extracts by means of high performance liquid chromatography followed by fractionation of the eluant resulted in supplementary nine fractions, three from each part, respectively. Three fractions exhibited a strong growth inhibition of the target organism Anabaena cylindrica Lemmermann. The second and the third fraction of the lipophilic butylmethylether extract indicate the presence of novel allelopathic active compounds with lipophilic characteristics. The results lead to the suggestion that more than two chemical compounds in Chara aspera are responsible for the growth inhibition of cyanobacteria.  相似文献   

7.
8.
Myosin rod protein (MRP) is a naturally occurring 155 kDa protein in Drosophila that includes the myosin heavy chain (MHC) rod domain, but contains a unique 77 amino acid residue N-terminal region that replaces the motor and light chain-binding domains of S1. MRP is a major component of myofilaments in certain direct flight muscles (DFMs) and it is present in other somatic, cardiac and visceral muscles in adults, larvae and embryos, where it is coexpressed and polymerized into thick filaments along with MHC. DFM49 has a relatively high content of MRP, and is characterized by an unusually disordered myofibrillar ultrastructure, which has been attributed to lack of cross-bridges in the filament regions containing MRP. Here, we characterize in detail the structural organization of myofibrils in adult and embryonic Drosophila muscles containing various MRP/MHC ratios and in embryos carrying a null mutation for the single MHC gene. We examined MRP in embryonic body wall and intestinal muscles as well as in DFMs with consistent findings. In DFMs numbers 49, 53 and 55, MRP is expressed at a high level relative to MHC and is associated with disorder in the positioning of thin filaments relative to thick filaments in the areas of overlap. Embryos that express MRP in the absence of MHC form thick filaments that participate in the assembly of sarcomeres, suggesting that myofibrillogenesis does not depend on strong myosin-actin interactions. Further, although thick filaments are not well ordered, the relative positioning of thin filaments is fairly regular in MRP-only containing sarcomeres, confirming the hypothesis that the observed disorder in MRP/MHC containing wild-type muscles is due to the combined action between the functional behavior of MRP and MHC myosin heads. Our findings support the conclusion that MRP has an active function to modulate the contractile activity of muscles in which it is expressed.  相似文献   

9.
10.
Summary The prime potassium channel from the tonoplast of Chara corallina has been analyzed in terms of an enzyme kinetic model (Gradmann, Klieber & Hansen 1987, Biophys. J. 53:287) with respect to its selectivity for K+ over Rb+ and to its blockage by Cs+ and by Ca2+. The channel was investigated by patchclamp techniques over a range of membrane voltages (V m , referred to an extracytoplasmic electrical potential of zero) from –200 mV to + 200 mV under various ionic conditions (0 to 300 mM K+, Rb+, Cs+, Ca2+, and Cl) on the two sides of isolated patches. The experimental data are apparent steady-state currentvoltage relationships under all experimental conditions used and amplitude histograms of the seemingly noisy open-channel currents in the presence of Cs+. The used model for K+ uniport comprises a reaction cycle of one binding site through four states, i.e., (1) K+-loaded and charged, facing the cytoplasm, (2) K+-loaded and charged facing the vacuole, (3) empty, facing the vacuole, and (4) empty, facing the cytoplasm. V m enters the system in the form of a symmetric Eyring barrier between state 1 and 2. The numerical results for the individual rate constants are (in 106s–1 for zero voltage and 1 m substrate concentration): k 12: 1,410, k 21: 3,370, k 23: 105,000, k 32: 10,600, k 34: 194, k 43: 270, k 41: 5,290, k 14: 15,800. For the additional presence of an alternate transportee (here Rb+), the model can be extended in an analog way by another two states ((5) Rb+-loaded and charged, facing cytoplasm, and (6) Rb+-loaded and charged, facing vacuole) and six more rate constants (k 45: 300, k 54: 240, k 56: 498, k 65: 4,510, k 63: 4,070, k 36: 403). This six-state model with its unique set of fourteen parameters satisfies the complete set of experimental data. If the competing substrate can be bound but not translocated (here Cs+ and Ca2+), k 56 and k 65 of the model are zero, and the stability constants K cyt (= k 36/k 63) and K vac (= k 45/k 54) turn out to be K cyt(Ca2+): 250 m –1 · exp(V m /(64 mV)), k vac(Ca2+): 10 m –1 · exp(–V m /(66 mV)), K cyt(Cs+): 0, and K vac(Cs+): 46 m –2 · exp(–V m /(12.25 mV)). With the assumption that the current fluctuations in the presence of Cs+ consist of incompletely resolved, short periods of complete openings and complete closures, the amplitude histograms of the noisy open channel currents can be described by a beta distribution, yielding the rate constants for binding (92 · 106 sec–1 · m –2 · exp(–V m /(22.5 mV)) and debinding (2, 106 sec–1 · m –2 · exp(V m /(22.5 mV)) of Cs+ to the vacuolar side of the channel as functions of the [Cs+] and of V m . Considering these data and those from the literature, an asymmetry of the channel can be assessed, with a high charge density at the cytoplasmic side (Eisenman-series Nr. XI) and a low charge density at the vacuolar side (Eisenman-series Nr. I). Furthermore, the results provide an example for intimate linkage between conduction and switching of a channel.This work has been supported by the Deutsche Forschungsgemeinschaft.  相似文献   

11.
It has been puzzled that in spite of its single-headed structure, myosin-IX shows the typical character of processive motor in multi-molecule in vitro motility assay, because this cannot be explained by hand-over-hand mechanism of the two-headed processive myosins. Here, we show direct evidence of the processive movement of myosin-IX using two different single molecule techniques. Using optical trap nanometry, we found that myosin-IX takes several large ( approximately 20nm) steps before detaching from an actin filament. Furthermore, we directly visualized the single myosin-IX molecules moving on actin filaments for several hundred nanometers without dissociating from actin filament. Since myosin-IX processively moves without anchoring the neck domain, the result suggests that the neck tilting is not involved for the processive movement of myosin-IX. We propose that the myosin-IX head moves processively along an actin filament like an inchworm via a unique long and positively charged insertion in the loop 2 region of the head.  相似文献   

12.
13.
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for ‘pCa-velocity’ relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.  相似文献   

14.
T. Shimmen  M. Yano 《Protoplasma》1984,121(1-2):132-137
Summary Latex beads coated with rabbit skeletal muscle myosin were introduced by intracellular perfusion intoChara cells from which the tonoplasts had been removed. Mg · ATP dependent movement of the beads along files ofChara chloroplast layers was observed. The movement was in opposite directions on the two sides of the indifferent line, indicating that the movement was dependent on the polarity of the actin bundles. This suggests that the unknown factor responsible for generating the motive force for cytoplasmic streaming inChara endoplasm is myosin. The advantages of the present experimental system for studying the sliding mechanism of actomyosin are discussed.Abbreviations APW artificial pond water - ATP adenosine 5-triphosphoric acid - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis(-aminoethyl ether)N, N, N, N-tetraacetic acid - HMM heavy meromyosin - LMM light meromyosin - NEM N-ethylmaleimide - PIPES piperazine-N, N- bis(2-ethanesulfonic acid)  相似文献   

15.
Pattern formation mechanisms in developing organisms determine cellular differentiation and function. However, the components that interact during the manifestation of a spatial pattern are in general unknown. Characean algae represent a model system to study pattern formation. These algae develop alternating acid and alkaline transport domains that influence the pattern of growth. In the present study, it will be demonstrated that a diffusion mechanism is implicated in acid and alkaline domain formation and this growth pattern. Experiments on the characean growth pattern were performed that resulted in pronounced, however, unpredictable modifications in the original pattern. A major component involved in this pattern-forming mechanism emerged from the nonlinear kinetics of the H+-ATPase that is located in the plasma membrane of these algae. Based on these kinetics, a mathematical model was developed and numerically analyzed. As a result, the contribution of a diffusional component to the characean acid/alkaline pattern appeared most likely.This work was supported by the Deutsche Forschungsgemeinschaft (grant #571 1/1) to JF.  相似文献   

16.
Starting in the middle of the 1970s, submerged macrophytes began to disappear from shallow Lake Warniak due to feeding pressure by grass carp (Ctenopharyngodon idella). In the middle of the 1980s, the lake was stocked with seston-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). By 1993, the biomass of silverhead carp and bighead carp had declined. This allowed charophytes to recolonize the bottom of the lake. The main charophyte species at this time were Chara globularis and Chara rudis. Since then, five other stonewort species have been found: Chara contraria, C. filiformis, C. tomentosa, C. aspera and Nitellopsis obtusa. Seventeen species of aquatic angiosperms have also been found. There were distinct changes in the relative abundance and spatial distribution of particular species. C. rudis developed most intensely in the shallow parts of the lake near the southern and western shores. C. globularis gradually took over the deeper central part of the lake. In 2001, C. rudis began to retreat again. The relative abundance and spatial distribution of charophytes was correlated to water clarity (r = 0.87, p < 0.05), total phosphorus level (r = −0.78; p < 0.05), and chlorophyll a content (r = −0.79; p < 0.05).  相似文献   

17.
Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.  相似文献   

18.
Previous in vitro motility assays using bipolar myosin thick filaments demonstrated that actin filaments were capable of moving in both directions along the myosin filament tracks. The movements; however, were slower in the direction leading away from the central bare zone than towards it. To understand the mechanism underlying these different direction-dependent motilities, we have examined the effects of temperature on the velocities of the bidirectional movements along reconstituted myosin filaments. Activation energies of the movements were determined by Arrhenius plots at high and low concentrations of ATP. As a result, the thermal activation energy of the movement away from the central bare zone was significantly higher than that of the movement toward the zone. Given that the backward movement away from the central bare zone would cause the myosin heads to be constrained and the stiffness of the cross-bridges to increase, these results suggest that elastic energy required for the cross-bridge transition is supplied by thermal fluctuations.  相似文献   

19.
Possible allelopathic effects of substances released from the macrophytes Chara globularis, Elodea canadensis, Myriophyllum spicatum on the common green alga Scenedesmus obliquus were tested in the laboratory with plastic plants and untreated medium as controls. A two-phase approach was used in which first the effects of physical presence of plants was studied (phase I) followed by the effects of plant culture filtrates (phase II). In the presence of plastic plants growth was reduced only marginally, but strong growth inhibition of Scenedesmus occurred in the physical presence of all macrophytes. In contrast, filtrates from Chara had no growth inhibitory effect on Scenedesmus. Myriophyllum filtrate reduced particle-based growth rate by 7% compared to filtration controls, while Elodea culture filtrate reduced volume-based growth by 12%, chlorophyll-based growth by 28% and particle-based growth by 15%. Photosystem II-efficiency of Scenedesmus was reduced in all three macrophyte treatments in phase I, but not in filtrates from macrophyte cultures (phase II). Thus, while enzyme activity or other physiological aspects may have been affected, the current study yielded no proof for allelopathically active compounds being directed at photosynthesis. Mean particle volume (MPV) of Scenedesmus was not influenced by macrophyte exudates and cultures remained dominated by unicells. The strong growth inhibitory effects found for Scenedesmus in the physical presence of macrophytes, but not in plastic controls, and no or weaker response in nutrient-enriched filtrates, suggest nutrient competition was a more powerful driving factor than allelochemicals. However, the experimental design does not exclude disappearance of allelochemicals during the filtration process.  相似文献   

20.
D. Sanders  F. A. Smith  N. A. Walker 《Planta》1985,163(3):411-418
Rapid lowering of the external pH (pH jump) enhances Cl influx in Chara. Experiments were conducted to distinguish between two factors which have previously been proposed to mediate in the response: raised cytoplasmic pH and lowered cytoplasmic Cl concentration. It is concluded that the latter alternative is more likely because: i) Cl influx is reduced at high external pH; ii) influx following the pH jump is never greater than that following pretreatment in Cl-free solution, which reduces cytoplasmic Cl concentration (Cl starvation); iii) the joint application of pH jump and Cl starvation does not result in a greater Cl influx than does Cl starvation alone; and iv) addition of NH 4 + , which increases cytoplasmic pH, does generate an additional stimulation of Cl influx following a pH jump. It is suggested that the increased cytoplasmic pH at the end of pretreatment at high external pH decays rapidly during the pH jump, and thus any effect on Cl influx is so transient as to be undetectable by the methods used. The results are discussed in terms of a reaction kinetic model for 2H+/Cl cotransport (Sanders, D. and Hansen, U.-P, 1981, J. Member. Biol. 58, 139–153) which describes quantitatively; i) the effects of NH 4 + on Cl influx in terms involving only a change in cytoplasmic pH; and ii) the combined effects of Cl starvation and NH 4 + in terms involving only changes in Cl concentration and cytoplasmic pH. Conversely, the combined effects of Cl starvation and pH jump cannot be described by the model if the effect of the pH jump is the consequence of increased cytoplasmic pH. The simple interpretation of experiments on whole cells involving manipulation of (the electrochemical potential difference for protons across the plasma membrane) is questioned in the light of these and previous findings that secondary factors can determine the response of Cl transport in Chara.Abbreviations CPW Chara pond water - [Cl]c cytoplasmic Cl concentration - pHc cytoplasmic pH - pHo external pH - transmembrane electrochemical gradient of protons - a membrane electrical potential difference  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号