首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene duplication is regarded as an important evolutionary mechanism creating genetic and phenotypic novelty. At the same time, the evolutionary mechanisms following gene duplication have been a subject of much debate. Here we analyze the sequence evolution of zonadhesin, a mammalian sperm ligand that binds to the oocyte zona pellucida in a species-specific manner. In pig, rabbit, and primates, precursor zonadhesin comprises, among others, one partial and four complete tandem repetitive D domains. The mouse precursor is distinguished by 20 additional partial D3 domains consisting of 120 amino acids each. This gene structure allows sequence comparison in both paralogues and orthologues. Detailed sequence analysis reveals that D domains evolve faster across paralogues than orthologues. Moreover, at the codon level, partial D3 paralogues of mouse show evidence of positive selection, whereas the corresponding orthologues do not. Individual posttranslational motif patterns and positive selection point to neofunctionalization of partial D3 paralogues of mouse, rather than subfunctionalization. However, as we found additional evidence for homogenization by partial gene conversion, sequence evolution of partial D3 paralogues of mouse might be better described as a combination of divergent and convergent evolution. So far, the divergence at the codon level has outbalanced the convergence at the level of smaller fragments. The probable driving force behind the evolutionary patterns observed is sexual selection. We finally discuss whether the functional determination influences the evolutionary regime acting on sperm ligands and egg receptors, respectively. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

2.
Positive selection has been shown to be pervasive in sex-related proteins of many metazoan taxa. However, we are only beginning to understand molecular evolutionary processes on the lineage to humans. To elucidate the evolution of proteins involved in human reproduction, we studied the sequence evolution of MAM domains of the sperm-ligand zonadhesin in respect to single amino acid sites, solvent accessibility, and posttranslational modification. GenBank-data were supplemented by new cDNA-sequences of a representative non-human primate panel. Solvent accessibility predictions identified a probably exposed fragment of 30 amino acids belonging to MAM domain 2 (i.e., MAM domain 3 in mouse). The fragment is characterized by significantly increased rate of positively selected amino acid sites and exhibits high variability in predicted posttranslational modification, and, thus, might represent a binding region in the mature protein. At the same time, there is a significant coincidence of positively selected amino acid sites and non-conserved posttranslational motifs. We conclude that the binding specificity of zonadhesin MAM domains, especially of the presumed epitope, is achieved by positive selection at the level of single amino acid sites and posttranslational modifications, respectively.  相似文献   

3.
Sexual selection has repeatedly been shown to be the probable driving force behind the positive Darwinian evolution of genes affecting male reproductive success. Here we compare the sequence evolution of the sperm ligand zonadhesin with body mass dimorphism in primates. In contrast to previous related studies, the present approach takes into account not only catarrhine primates, but also platyrrhines and lemurs. In detail, we analyze the sequence evolution of concatenated zonadhesin fragments (555 bp) of four Lemuroidea, five Platyrrhini, and seven Catarrhini, using the rate ratio of nonsynonymous to synonymous substitutions (dn/ds=omega). Unexpectedly, subsequent regression analyzes between omega estimates for the terminal branches of a primate phylogeny and residual male body mass reveal that sequence evolution of zonadhesin decreases with increasing sexual dimorphism in body weight. Mapping published mating system classifications onto these results illustrates that unimale breeding species show a tendency for rather slow sequence evolution of zonadhesin and comparably pronounced sexual dimorphism in body weight. Female choice and sperm competition can be assumed to drive the evolution of zonadhesin. We speculate that the level of sperm competition is lower in more sexually dimorphic primates because males of these species monopolize access to fertile females more successfully. Thus, variation in sperm competition may be driving the observed negative correlation of sequence evolution and sexual dimorphism in body weight.  相似文献   

4.
A hallmark of positive selection (adaptive evolution) in protein-coding regions is a d(N)/d(S) ratio >1, where d(N) is the number of nonsynonymous substitutions/nonsynonymous sites and d(S) is the number of synonymous substitutions/synonymous sites. Zonadhesin is a male reproductive protein localized on the sperm head, comprising many domains known to be involved in cell-cell interaction or cell adhesion. Previous studies have shown that VWD domains (homologous to the D domains of the von Willebrand factor) are involved directly in binding to the female zona pellucida (ZP) in a species-specific manner. In this study, we sequenced 47 coding exons in 12 primate species and, by using maximum-likelihood methods to determine sites under positive selection, we show that VWD2, membrane/A5 antigen mu receptor, and mucin-like domains in zonadhesin are rapidly evolving and, thus, may be involved in binding to the ZP in a species-specific manner in primates. In addition, polymorphism data from 48 human individuals revealed significant polymorphism-to-divergence heterogeneity and a significant departure from equilibrium-neutral expectations in the frequency spectrum, suggesting balancing selection and positive selection occurring in zonadhesin (ZAN) within human populations. Finally, we observe adaptive evolution in haplotypes segregating for a frameshift mutation that was previously thought to indicate that ZAN was a potential pseudogene.  相似文献   

5.
Zonadhesin is a mosaic protein in sperm membrane fractions that binds directly and in a species-specific manner to the extracellular matrix (zona pellucida) of the oocyte. The active form of pig zonadhesin from capacitated, epididymal spermatozoa comprises two covalently associated polypeptide chains of M(r) 105,000 (p105) and M(r) 45,000 (p45). Here we report detection and characterization of multiple zonadhesin isoforms in freshly ejaculated cells. Antibodies to the predicted von Willebrand D0-D1, D1, and D3 domains of pig zonadhesin recognized p105, p45, and additional M(r) 60,000-90,000 polypeptides in particulate fractions of uncapacitated cells. Although the p105/45 form constituted a minority of all zonadhesin forms in sperm membrane fractions, it was the predominant form capable of binding to the pig zona pellucida. Zonadhesin-binding sites were distributed over the entire zona pellucida. Anion exchange chromatography resolved active, p105/45 zonadhesin from the p60-90 inactive forms. Without disulfide bond reduction some zonadhesin was M(r) > or = 300,000, including M(r) 300,000 and 900,000 proteins comprising in part multimers of p105/45. The multimeric forms did not bind the zona pellucida as avidly as did the p105/45 monomer. Expressed D1 and D3 domain fragments containing the CG(L/V)CG sequence motif spontaneously formed multimers at -246 mV E(h) in vitro. Double Cys --> Ser mutants of the D1 fragment formed multimers with the same apparent kinetics as the wild type protein. Zonadhesin localized to the apical head of pig spermatozoa. We conclude that a heterogeneous combination of specific proteolysis and intermolecular disulfide bond formation in the sperm head generates multiple forms of zonadhesin with differing avidities for the zona pellucida.  相似文献   

6.
Interaction of rapidly evolving molecules imparts species specificity to sperm-egg recognition in marine invertebrates, but it is unclear whether comparable interactions occur during fertilization in any vertebrate species. In mammals, the sperm acrosomal protein zonadhesin is a rapidly evolving molecule with species-specific binding activity for the egg zona pellucida (ZP). Here we show using null mice produced by targeted disruption of Zan that zonadhesin confers species specificity to sperm-ZP adhesion. Sperm capacitation selectively exposed a partial von Willebrand D domain of mouse zonadhesin on the surface of living, motile cells. Antibodies to the exposed domain inhibited adhesion of wild-type spermatozoa to the mouse ZP but did not inhibit adhesion of spermatozoa lacking zonadhesin. Zan−/− males were fertile, and their spermatozoa readily fertilized mouse eggs in vitro. Remarkably, however, loss of zonadhesin increased adhesion of mouse spermatozoa to pig, cow, and rabbit ZP but not mouse ZP. We conclude that zonadhesin mediates species-specific ZP adhesion, and Zan−/− males are fertile because their spermatozoa retain adhesion capability that is not species-specific. Mammalian sperm-ZP adhesion is therefore molecularly robust, and species-specific egg recognition by a protein in the sperm acrosome is conserved between invertebrates and vertebrates, even though the adhesion molecules themselves are unrelated.  相似文献   

7.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

8.
9.
Zonadhesin: characterization, localization, and zona pellucida binding.   总被引:2,自引:0,他引:2  
Zonadhesin is a multiple-domain transmembrane protein that is believed to function as a sperm-zona pellucida binding protein. In this study we sequenced zonadhesin from rabbit testis and analyzed its processing, expression, localization, and zona pellucida binding. We show that the precursor protein occurs exclusively in the testis and that proteolytic processing results in the formation of three fragments: p43 (D1 domain), p97 (D2-D4 domains), and p58 (D4 domain-C-terminal). In mature spermatozoa the p43 and p97 fragments exist as disulfide-bonded dimers. During spermatogenesis, synthesis of zonadhesin mRNA chiefly occurs in primary spermatocytes, whereas the protein is abundant in both Sertoli cells and spermatids. In spermatozoa the protein is localized exclusively to the anterior acrosome but is not available for binding antibody on live spermatozoa. Once the acrosome reaction is induced, zonadhesin is lost from the spermatozoon, but remains with the acrosomal shroud. We show that recombinant D4 domain can bind zona pellucida, and we propose that zonadhesin functions after the acrosome reaction has been initiated to bind the acrosomal shroud to the zona pellucida.  相似文献   

10.
Rapid evolution has been identified for many reproductive genes and recent studies have combined phylogenetic tests and information on species mating systems to test sexual selection. Here we examined the molecular evolution of the ADAM gene family, a diverse group of 35 proteins capable of adhesion to and cleavage of other proteins, using sequence data from 25 mammalian genes. Out of the 25 genes analyzed, all those expressed in male reproductive tissue showed evidence of positive selection. Positively selected amino acids within the protein adhesion domain were only found in sperm surface ADAM proteins (ADAMs 1, 2, 3, 4, and 32) suggesting selection driven by male × female interactions. We tested heterogeneity in rates of evolution of the adhesion domain of ADAM proteins by using sequence data from Hominidae and macaques. The use of the branch and branch-site models (PAML) showed evidence of higher d N/d S and/or positive selection linked to branches experiencing high postmating selective pressures (chimpanzee and macaque) for Adams 2, 18, and 23. Moreover, we found consistent higher proportion of nonsynonymous relative to synonymous and noncoding sequence substitutions in chimpanzee and/or macaque only for Adams 2, 18, and 23. Our results suggest that lineage-specific sexual selection bouts might have driven the evolution of the adhesion sperm protein surface domains of ADAMs 2 and 18 in primates. Adams 2 and 18 are localized in chromosome 8 of primates and adjacent to each other, so their evolution might have also been influenced by their common genome localization.  相似文献   

11.
Proteins involved in sperm-egg binding have been shown to evolve rapidly in several groups of invertebrates and vertebrates. Mammalian SED1 (secreted protein containing N-terminal Notch-like type II epidermal growth factor (EGF) repeats and C-terminal discoidin/F5/8 C domains) is a recently identified sperm surface protein that binds the egg zona pellucida and facilitates sperm-egg adhesion. SED1-null male mice are subfertile. Here we examine the SED1 gene from 11 mammalian species and provide evidence that it underwent accelerated evolution in ancestral primates, most likely driven by positive selection. Specifically, the intensity of the positive selection across various protein domains of SED1 was heterogeneous. Although one of the 2 Notch-like EGF domains, which mediate protein-protein binding, was lost in primate SED1, the second EGF domain evolved under strong positive selection favoring polar to nonpolar amino acid replacements. By contrast, the 2 discoidin/F5/8 type C domains, which are involved in protein-cell membrane binding, do not show definite signs of positive selection. The structural modification and occurrence of directional selection in ancestral primates but not any other lineage suggest that the function of SED1 may have changed during primate evolution. These results reveal a different evolutionary pattern of SED1 from that of many other sperm-egg-binding proteins, which often show diversifying selection occurring in multiple lineages.  相似文献   

12.
13.
Ponting CP  Dickens NJ 《Genome biology》2001,2(7):comment2006.1-comment20066
The evolutionary history of eukaryotic proteins involves rapid sequence divergence, addition and deletion of domains, and fusion and fission of genes. Although the protein repertoires of distantly related species differ greatly, their domain repertoires do not. To account for the great diversity of domain contexts and an unexpected paucity of ortholog conservation, we must categorize the coding regions of completely sequenced genomes into domain families, as well as protein families.  相似文献   

14.
It is widely established that proteins involved in reproduction diverge between species more quickly than other proteins. For male sperm proteins, rapid divergence is believed to be caused by postcopulatory sexual selection and/or sexual conflict. Here, we derive the expected levels of gene diversity within populations and divergence between them for male sperm protein genes evolving by postcopulatory, prezygotic fertility competition, i.e. the function imputed for some sperm and seminal fluid genes. We find that, at the mutation‐selection equilibrium, both gene diversity within species and divergence between them are elevated relative to genes with similar selection coefficients expressed by both sexes. We show that their expected level of diversity is a function of the harmonic mean number of mates per female, which affects the strength of fertility selection stemming from male–male sperm competition. Our predictions provide a null hypothesis for distinguishing between other selective hypotheses accounting for the rapid evolution of male reproductive genes.  相似文献   

15.
Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology.  相似文献   

16.
Hypotheses for the origin and maintenance of sexual size dimorphism (SSD) fall into three primary categories: (i) sexual selection on male size, (ii) fecundity selection on female size and (iii) ecological selection for gender‐specific niche divergence. We investigate the impact of these forces on SSD evolution in New World pitvipers (Crotalinae). We constructed a phylogeny from up to eight genes (seven mitochondrial, one nuclear) for 104 species of NW crotalines. We gathered morphological and ecological data for 82 species for comparative analyses. There is a strong signal of sexual selection on male size driving SSD, but less evidence for fecundity selection on female size across lineages. No support was found for allometric scaling of SSD (Rensch's rule), nor for directional selection for increasing male size (the Fairbairn–Preziosi hypothesis) in NW crotalines. Interestingly, arboreal lineages experience higher rates of SSD evolution and a pronounced shift to female‐biased dimorphism. This suggests that fecundity selection on arboreal females exaggerates ecologically mediated dimorphism, whereas sexual selection drives male size in terrestrial lineages. We find that increasing SSD in both directions (male‐ and female‐biased) decreases speciation rates. In NW crotalines, it appears that increasing magnitudes of ecologically mediated SSD reduce rates of speciation, as divergence accumulates within species among sexes, reducing adaptive divergence between populations leading to speciation.  相似文献   

17.
Okuda Y  Fukumori Y 《FEBS letters》2001,491(3):169-173
A magnetosome-associated protein, MAM22, contains a TPR domain (five TPR motifs and one putative TPR motif) that has been known to mediate protein-protein interactions. We expressed the mam22 gene in Escherichia coli and found that the purified MAM22 was reversibly self-aggregated by NaCl. The structural model of MAM22 which has been proposed on the basis of the crystal structure of the N-terminal TPR domain of a human Ser/Thr protein phosphatase suggests the novel hydrophobic colloidal features of MAM22 with TPR motifs.  相似文献   

18.
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.  相似文献   

19.
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post‐copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra‐pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an ‘early‐burst’ model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate‐to‐high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号