首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Synopsis We examined early life history traits and patterns of settlement of the slender filefish, Monacanthus tuckeri, at Calabash Caye, Turneffe Atoll, Belize. A settlement peak was evident at the new moon, and no settlement occurred at the full moon. However, settlement rates at the quarter moons could not be estimated due to sampling gaps. Many reef fishes show new moon settlement peaks, so M. tuckeri shares some characteristics with the primarily perciform species on coral reefs. Pelagic larval duration was long (mean = 42 days) and variable, suggesting that dispersal patterns might be diverse. Size at settlement was large (mean = 32 mm total length) and also variable. Larval duration and size at settlement were outside of the average values exhibited by reef fishes, but are not beyond the extreme end of the range, and might be explained by association with pelagic debris prior to settlement. There were no differences in overall settlement rates on reef and seagrass habitats, and fish settling to either habitat did not differ in larval duration, size at settlement, or larval growth rate. This suggests that settlement to alternative habitats may be random, or driven by availability of suitable microhabitat, rather than habitat quality or individual traits.  相似文献   

2.
For benthic marine organisms with complex life cycles, conditionsexperienced by pelagic larvae can influence juvenile survival.Trait-specific selective mortality has been documented in thelaboratory and field, yet our knowledge of the factors contributingto the existence, strength, and consistency of natural selectivemortality is limited. We compiled previously published and unpublisheddata on the common Caribbean coral reef fish, Thalassoma bifasciatum,recruiting to Barbados, West Indies, and the upper Florida Keysto examine how environmental variability during pelagic larvallife influences the distribution of early life-history traitsexhibited by new recruits. We explored how the scope of variabilityin otolith-derived traits such as larval growth, pelagic larvalduration (PLD), size and condition at settlement, and earlyjuvenile growth influences the degree to which mortality ofjuveniles is selective. At both locations, contrasting oceanographicconditions (periodic passage of large low-salinity North BrazilCurrent [NBC] rings near Barbados and seasonal variation inwater temperature at Florida) led to significant differencesin the early life-history traits of recruits. Mortality wasmost frequently selective for the two most variable traits,condition at settlement and early juvenile growth. Environmentalvariability (including variation in predation pressure and stress-inducingconditions) also likely influences juvenile mortality and consequentlythe degree to which selective loss of particular traits occurs.As we begin to better understand the spatial, temporal, andspecies-specific circumstances in which events occurring duringlarval life influence juvenile performance, studies must alsobe extended to examine how these processes are translated intoadult fitness.  相似文献   

3.
As animals with complex life cycles metamorphose from one stage to the next, carry-over effects from earlier stages can affect future mortality. To examine the relationship between early life history traits and survival, seven monthly cohorts of newly-settled bluehead wrasse Thalassoma bifasciatum were collected immediately after settlement and over sequential 3-day periods. Otolith analysis was used to quantify mean larval and juvenile growth rates, pelagic larval duration (PLD), and settlement size and condition of different age classes to identify the traits most important for survival. Overall, survivors tended to have shorter PLDs, to settle at smaller sizes and higher condition levels, and to exhibit faster early juvenile growth. Water temperature contributed to among-cohort variability in traits as warmer water led to faster larval and juvenile growth and shorter PLDs. Trait-specific fitness functions demonstrated that temperature can influence fitness by changing the nature of selection on each trait. Estimates of selection intensity revealed that settlement condition contributed the most to variation in fitness across cohorts, followed by juvenile growth. Frequent loss of low settlement condition individuals and occasional loss of the very highest condition fish suggest that particularly high settlement condition during the warmest temperatures may be detrimental. Not only does the quality of settlers vary over time, but selective loss of individuals with particular phenotypic traits is not pervasive and can vary with environmental conditions such as temperature.  相似文献   

4.
Life history theory and empirical studies suggest that large size or earlier metamorphosis are suitable proxies for increased lifetime fitness. Thus, across a gradient of larval habitat quality, individuals with similar phenotypes for these traits should exhibit similar post-metamorphic performance. Here we examine this paradigm by testing for differences in post-metamorphic growth and survival independent of metamorphic size in a temperate (spring peeper, Pseudacris crucifer) and tropical (red-eyed treefrog, Agalychnis callidryas) anuran reared under differing larval conditions. For spring peepers, increased food in the larval environment increased post-metamorphic growth efficiency more than predicted by metamorphic phenotype and led to increased mass. Similarly, red-eyed treefrogs reared at low larval density ended the experiment at a higher mass than predicted by metamorphic phenotype. These results show that larval environments can have delayed effects not captured by examining only metamorphic phenotype. These delayed effects for the larval environment link larval and juvenile life history stages and could be important in the population dynamics of organisms with complex life cycles.  相似文献   

5.
Abstract Analyses of condition data are conspicuous by their paucity in the extensive tropical reef-fish literature. Researchers typically quantify abundance at settlement, with little regard for the demonstrably variable quality of newly settled fishes. Condition may be functionally classified by indices of growth (e.g. the RNA-DNA index or peripheral growth increments of the otolith), starvation (e.g. height of midgut mucosal cells), storage (e.g. lipid content), or morphometry (e.g. dry weight/length’), all of which are variably correlated with each other. At present all indices are species-, stage-, technique- and therefore often investigation-specific, as laboratory-reared larvae for calibrating field-collected condition indices are often specific to the rearing procedure. RNA indices are particularly appropriate for estimating larval condition. In pelagic juveniles, or in recently settled juveniles, the width of peripheral growth increments of the otolith estimates average growth rate in length or dry weight during the previous few days, which discerns increasing from decreasing condition. Increment width changes in otoliths are particularly responsive to starvation events, and are correlated with RNA indices. Growth indices have great potential for determining which individuals were growing faster, thereby reducing their pelagic duration, and thus increasing their survival potential. The recent debate regarding whether bigger larvae have better survival could be re-addressed, by determining if larvae with faster growth indices have relatively enhanced survival.  相似文献   

6.
Otolith-based reconstructions of daily larval growth increments were used to examine the effect of variation in larval growth on size and age at settlement and post-settlement growth, survival and habitat preferences of juvenile bicolor damselfish (Stegastes partitus Poey). During August 1992 and 1994, newly settled S. partitus were collected from Montastraea coral heads and Porites rubble piles in Tague Bay, St. Croix, U.S. Virgin Islands (17 degrees 45'N, 64 degres 42' W). Daily lapillar otolith increments from each fish were counted and measured with Optimas image analysis software. S. partitus pelagic larval duration was 23.7 d in 1992 (n = 70) and 24.6 d in 1994 (n = 38) and larval age at settlement averaged 13.0 mm total length both years. Analysis of daily otolith increments demonstrated that variation in larval growth rates and size and age at settlement had no detectable effect on post-settlement survivorship but that larger larvae showed a preference for Montastraea coral at settlement. Late larval and early juvenile growth rates showed a significant positive relationship indicating that growth patterns established during the planktonic stage can span metamorphosis and continue into the benthic juvenile phase. Larval growth rates during the first two weeks post-hatching also had a strong effect on age to developmental competence (ability to undergo metamorphosis) in both 1992 and 1994 with the fastest growing larvae being 8 d younger and 0.8 mm smaller at settlement than the slowest growing larvae. These differential growth rates in early stage larvae established trajectories toward larval developmental competence and may prove important in biogeographical studies of larval dispersal.  相似文献   

7.
A significant seasonal variation in size at settlement has been observed in newly settled larvae of Dreissena polymorpha in Lake Constance. Diet quality, which varies temporally and spatially in freshwater habitats, has been suggested as a significant factor influencing the life history and development of freshwater invertebrates. Accordingly, experiments were conducted with field-collected larvae to test the proposal that diet quality can determine planktonic larval growth rates, size at settlement and subsequent post-metamorphic growth rates. Larvae were fed one of two diets or starved. One diet was composed of cyanobacterial cells, which are deficient in polyunsaturated fatty acids (PUFAs) and the other was a mixed diet rich in PUFAs. Freshly metamorphosed animals from the starvation treatment had a carbon content per individual 70% lower than that of larvae fed the mixed diet. This apparent exhaustion of larval internal reserves resulted in a 50% reduction of the post-metamorphic growth rates. Growth was also reduced in animals previously fed the cyanobacterial diet. Hence, low food quantity or low food quality during the larval stage of D. polymorpha, lead to irreversible effects for post-metamorphic animals and are related to inferior competitive abilities.  相似文献   

8.
Coral reef fish spend their first few weeks developing in the open ocean, where eggs and larvae appear merciless to tides and currents, before attempting to leave the pelagic zone and settle on a suitable reef. This pelagic dispersal phase is the process that determines population connectivity and allows replenishment of harvested populations across multiple coral reef habitats. Until recently this pelagic larval dispersal phase has been poorly understood and has often been referred to as the ‘black-box’ in the life-history of coral reef fishes. In this perspective article we highlight three areas where mathematical and computational approaches have been used to aid our understanding of this important ecological process. We discuss models that provide insights into the evolution of the pelagic larval phase in coral reef fish, an unresolved question which lends itself well to a modelling approach due to the difficulty in obtaining empirical data on this life history strategy. We describe how studies of fish hearing and physical sound propagation models can be used to predict the detection distance of reefs for settling larval fish, and the potential impact of anthropogenic noise. We explain how random walk models can be used to explore individual- and group-level behaviour in larval fish during the dispersal and settlement stage of their life-history. Finally, we discuss the mutual benefits that mathematical and computational approaches have brought to and gained from the field of larval behaviour and dispersal of reef fishes.  相似文献   

9.
Duong  B.  Blomberg  S. P.  Cribb  T. H.  Cowman  P. F.  Kuris  A. M.  McCormick  M. I.  Warner  R. R.  Sun  D.  Grutter  A. S. 《Coral reefs (Online)》2019,38(2):199-214

The pelagic larval stage is a critical component of the life cycle of most coral reef fishes, but the adaptive significance of this stage remains controversial. One hypothesis is that migrating through the pelagic environment reduces the risk a larval fish has of being parasitised. Most organisms interact with parasites, often with significant, detrimental consequences for the hosts. However, little is known about the parasites that larval fish have upon settlement, and the factors that affect the levels of parasitism. At settlement, coral reef fishes vary greatly in size and age (pelagic larval duration), which may influence the degree of parasitism. We identified and quantified the parasites of pre-settlement larvae from 44 species of coral reef fishes from the Great Barrier Reef and explored their relationship with host size and age at settlement, and phylogeny. Overall, less than 50% of the larval fishes were infected with parasites, and over 99% of these were endoparasites. A Bayesian phylogenetic regression was used to analyse host-parasite (presence and intensity) associations. The analysis showed parasite presence was not significantly related to fish size, and parasite intensity was not significantly related to fish age. A phylogenetic signal was detected for both parasite presence and intensity, indicating that, overall, closely related fish species were likely to have more similar susceptibility to parasites and similar levels of parasitism when compared to more distantly related species. The low prevalence of infection with any parasite type and the striking rarity of ectoparasites is consistent with the ‘parasite avoidance hypothesis’, which proposes that the pelagic phase of coral reef fishes results in reduced levels of parasitism.

  相似文献   

10.
The cellular condition of liver hepatocytes and the height of gut epithelium cells of larval Amphiprion melanopus were sensitive indicators of feeding condition. Muscle fibres of the trunk showed marked separation in fish fed every third day just prior to settlement. Low feeding regimes also caused reductions in growth, increases in larval duration and reductions in size at metamorphosis. Gut epithelium cell height was also influenced by fish standard length and age. This study suggests that gut epithelium cell height is a useful index for an examination of the importance of starvation of larvae in tropical waters; however, size and age standardization is required prior to comparisons of wild caught fish through time or with laboratory samples.  相似文献   

11.
We investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Larval survival, larval development rate, size at settlement and metamorphosis success were found to be substantially heritable, whereas larval growth rate and juvenile traits were not. We identified a strong positive genetic correlation between larval development rate and size at settlement, and argue that selection could optimize both age and size at settlement. However, trade-offs, resulting in costs of metamorphosing early and large, were suggested by negative genetic correlations or covariances between larval development rate/size at settlement and both metamorphosis success and juvenile survival. Moreover, size advantage at settlement disappeared with time during the juvenile stage. Finally, we observed no genetic correlations between larval and juvenile stages, implying genetic independence of life-history traits between life-stages. We suggest two possible scenarios for the maintenance of genetic polymorphism in the early life-history strategy of C. gigas.  相似文献   

12.
For organisms with complex life cycles, variation among individuals in traits associated with survival in one life-history stage can strongly affect the performance in subsequent stages with important repercussions on population dynamics. To identify which individual attributes are the most influential in determining patterns of survival in a cohort of reef fish, we compared the characteristics of Pomacentrus amboinensis surviving early juvenile stages on the reef with those of the cohort from which they originated. Individuals were collected at hatching, the end of the planktonic phase, and two, three, four, six and eight weeks post-settlement. Information stored in the otoliths of individual fish revealed strong carry-over effects of larval condition at hatching on juvenile survival, weeks after settlement (i.e. smaller-is-better). Among the traits examined, planktonic growth history was, by far, the most influential and long-lasting trait associated with juvenile persistence in reef habitats. However, otolith increments suggested that larval growth rate may not be maintained during early juvenile life, when selective mortality swiftly reverses its direction. These changes in selective pressure may mediate growth-mortality trade-offs between predation and starvation risks during early juvenile life. Ontogenetic changes in the shape of selectivity may be a mechanism maintaining phenotypic variation in growth rate and size within a population.  相似文献   

13.
Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits.  相似文献   

14.
New recruits of the bluehead wrasse Thalassoma bifasciatum were censused and collected from nearshore reefs of Barbados, West Indies, every 2 weeks for 20 months. Their temporal coincidence with low salinity (<34·5) water during their pelagic larval stage was determined by comparing the otolith records of new recruits with conductivity and temperature records from a current meter moored 2 km off the west coast of the island. Larval residence in a low salinity North Brazil Current (NBC) ring appeared to have a negative impact on growth. Larvae that encountered a NBC ring for at least 7 days during either the first half of the larval period exhibited slower larval growth than those that did not encounter a ring for 7 days during any part of their larval period. As a result of this slower growth, larvae that encountered low salinity waters had a longer pelagic larval duration and were larger at the time of settlement. The magnitude of settlement was not distinctly related to the presence or absence of a NBC ring, but the largest settlement event occurred at the end of the longest ring event. Early juvenile growth did not vary between fish that had encountered a ring and those that did not, so size differences at settlement were propagated through the first week of life on the reef. The potentially opposing attributes of fast and slow‐growing larvae ( e.g . fast growing larvae with shorter larval stage duration but smaller size at settlement and higher susceptibility to reef predation), and the resulting differential mortality on the reef may promote the persistence of individuals in the population with contrasting life history traits, and contribute to the lack of a relationship between larval growth and recruitment success. Positive transport related effects of rings ( i.e . enhanced retention during some ring events) may further complicate matters by outweighing the negative impact of rings on larval growth.  相似文献   

15.
Variation in environmental conditions during development can lead to changes in life-history traits with long-lasting effects. Here, we study how variation in temperature and host plant (i.e. the consequences of potential maternal oviposition choices) affects a suite of life-history traits in pre-diapause larvae of the Glanville fritillary butterfly. We focus on offspring survival, larval growth rates and relative fat reserves, and pay specific attention to intraspecific variation in the responses (G × E × E). Globally, thermal performance and survival curves varied between diets of two host plants, suggesting that host modifies the temperature impact, or vice versa. Additionally, we show that the relative fat content has a host-dependent, discontinuous response to developmental temperature. This implies that a potential switch in resource allocation, from more investment in growth at lower temperatures to storage at higher temperatures, is dependent on the larval diet. Interestingly, a large proportion of the variance in larval performance is explained by differences among families, or interactions with this variable. Finally, we demonstrate that these family-specific responses to the host plant remain largely consistent across thermal environments. Together, the results of our study underscore the importance of paying attention to intraspecific trait variation in the field of evolutionary ecology.  相似文献   

16.
Making the appropriate decision in the face of predation risk dictates the fate of prey, and predation risk is highest at life history boundaries such as settlement. At the end of the larval phase, most coral reef fishes enter patches of reef containing novel predators. Since vision is often obscured in the complex surroundings, chemical information released from damaged conspecific is used to forewarn prey of an active predator. However, larvae enter the reef environment with their own feeding and growth histories, which will influence their motivation to feed and take risks. The present study explored the link between recent growth, feeding history, current performance and behavioural risk taking in newly settling stages of a coral reef damselfish (Pomacentrus amboinensis). Older and larger juveniles in good body condition had a stronger response to chemical alarm cues of injured conspecifics; these fish spent a longer time in shelter and displayed a more dramatic decrease in foraging behaviour than fish in lower body condition. Feeding experiments supported these findings and emphasized the importance of body condition in affecting risk assessment. Evidently, larval growth history and body condition influences the likelihood of taking risks under the threat of predation immediately after settlement, thereby affecting the probability of survival in P. amboinensis.  相似文献   

17.
Estimates of early-life traits of fishes (e.g. pelagic larval duration (PLD) and spawning date) are essential for investigating and assessing patterns of population connectivity. Such estimates are available for a large number of both tropical and temperate fish species, but few studies have assessed their variability in space, especially across multiple scales. The present study, where a Mediterranean fish (i.e. the white seabream Diplodus sargus sargus) was used as a model, shows that spawning date and PLD are spatially more variable at a scale of kilometres than at a scale of tens to hundreds of kilometres. This study indicates the importance of considering spatial variability of early-life traits of fishes in order to properly delineate connectivity patterns at larval stages (e.g. by means of Lagrangian simulations), thus providing strategically useful information on connectivity and relevant management goals (e.g. the creation of networks of marine reserves).  相似文献   

18.
Larval duration of the non-native Indo-Pacific lionfish was estimated from samples collected along the Bahamian Archipelago using sagittal otoliths. Settlement marks, characterized by daily growth increments with reduced coloration, less definitive margins, and a re-orientation of the growth axes and otolith shape, were determined for 28 individuals. Settlement age was between 20 and 35 days with a mean of 26.2 days. Comparisons of settlement age to other littoral and reef fish species suggest that lionfish settlement age is moderate to relatively low. Lionfish pelagic larval duration is apparently sufficient to allow their rapid establishment and wide geographic range in the western Atlantic and Caribbean.  相似文献   

19.
Intraspecific phenotypic variation between populations separated by large geographic distances is common. Differences in the mean and variance of traits among populations can be used to infer the relative strength, direction, and type of selection on traits. Patterns in the mean provide information on the type of selection, and patterns in variance provide information on the strength of selection. However, interpretation of mean/variance patterns is difficult when two traits are linked and strongly correlated to fitness because it is unlikely that each trait will reach phenotypic optima. In amphibians time to metamorphosis and size at metamorphosis are positively related both phenotypically and genetically. Using a common-garden experiment we investigated whether selection favours shorter time to metamorphosis or increased mass at metamorphosis between two populations which differ in the length of the post-metamorphic growing season by 2–4 weeks. Animals from the population a shorter growing season took longer to reach and metamorphosed at a greater mass, while animals from the population with a longer period for post metamorphic growth reached metamorphosis faster, but at a smaller mass. Greater phenotypic variance was observed in both traits in the population with the shorter growing season. These data suggest that animals from the population with a restricted growth period maximise mass at metamorphosis at the expense of longer larval periods while animals from population with the longer post-metamorphic growth period sacrifice mass at metamorphosis to shorten the larval period and maximise larval survival. Differences in phenotypic variance among populations suggest either directional or diversifying selection has acted on both traits.  相似文献   

20.
Counting growth increments in otoliths recently has become an accepted method of ageing tropical fishes, however, verification is essential for each new species. In this study, growth increments in otoliths of the juveniles of several coral reef damselfishes (Pomacentridae) were deposited daily and a distinct transition from wide to narrow increments coincided with settlement from the pelagic larval phase into the demersal habitat. Thus, the data of settlement for each individual fish could be calculated with acceptable accuracy. The daily pattern of recruitment to a coral reef was successfully reconstructed using the otoliths from a large sample of juvenile fish collected at the end of the breeding season. This was because the original pattern of settlement was preserved in the age distribution for at least 4 to 5 months. This application of otolith ageing techniques may be extended to reveal the temporal patterns of recruitment to many localities encompassing spatial scales larger than would be logistically possible using visual censuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号