首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lactose permease of Escherichia coli was expressed in two fragments (split permease), each with a Cys residue, and cross-linking was studied. Split permease with a discontinuity in either loop II/III (N2C10permease) or loop VI/VII (N6C6permease) was used. Proximity of multiple pairs of Cys residues in helices I and XI or XII was examined by using three homobifunctional thiol-specific cross-linking reagents of different lengths and flexibilities (6 A, rigid; 10 A, rigid; 16 A, flexible) or iodine. Cys residues in the periplasmic half of helix I cross-link to Cys residues in the periplasmic half of helix XI. In contrast, no cross-linking is evident with paired Cys residues near the cytoplasmic ends of helices I and XI. Therefore, the periplasmic halves of helices I and XI are in close proximity, and the helices tilt away from each other towards the cytoplasmic face of the membrane. Cross-linking is also found with paired Cys residues near the middle of helices I and XII, but not with paired Cys residues near either end of the helices. Thus, helices I and XII are in close proximity only in the approximate middle of the membrane. Based on the findings, a modified helix packing model is proposed.  相似文献   

2.
Wang Q  Kaback HR 《Biochemistry》1999,38(51):16777-16782
The six N-terminal transmembrane helices (N(6)) and the six C-terminal transmembrane helices (C(6)) in the lactose permease of Escherichia coli, each containing a single Cys residue, were coexpressed, and cross-linking was studied. The proximity of paired Cys residues in helices III (position 78, 81, 84, 86, 87, 88, 90, 93, or 96) and VII (position 227, 228, 231, 232, 235, 238, 239, 241, 243, 245, or 246) was examined by using iodine or two rigid homobifunctional thiol-specific cross-linking reagents with different lengths [N,N'-o-phenylenedimaleimide (o-PDM; 6 A) and N, N'-p-phenylenedimaleimide (p-PDM; 10 A)]. Cys residues in the periplasmic half of helix III (position 87, 93, or 96) cross-link to Cys residues in the periplasmic half of helix VII (position 235, 238, 239, 241, or 245). In contrast, no cross-linking is evident with paired Cys residues near the cytoplasmic ends of helices III (position 78 or 81) and VII (position 227, 228, 213, 232, or 235). Therefore, the periplasmic halves of helices III and VII are in close proximity, and the helices tilt away from each other toward the cytoplasmic face of the membrane. On the basis of the findings, a modified helix packing model for the permease is presented.  相似文献   

3.
Wu J  Hardy D  Kaback HR 《Biochemistry》1999,38(6):1715-1720
The N-terminal six transmenbrane helices (N6) and the C-terminal six transmembrane helices (C6) of the lactose permease, each containing a single-Cys residue, were coexpressed, and proximity was studied. Paired Cys residues in helices IV (positions 114, 116, 119, 122, 125, or 129) and VII (227, 231, 232, 234, 235, 238, 239, 242, 243, 245, or 246) or XI (350, 353, 354, 357, 361, or 364) were tested for cross-linking in the presence of two rigid homobifunctional thiol-specific cross-linkers, N,N'-o-phenylenedimaleimide (o-PDM; 6 A) and N,N'-p-phenylenedimaleimide (p-PDM; 10 A). Cys residues in the middle of helix IV (position 119 or 122) cross-link to Cys residues in the middle of helix VII (position 238, 239, 242, or 243). In contrast, no cross-linking is evident with paired Cys residues at either end of helix IV (position 114, 116, 125, or 129) or helix VII (position 227, 231, 232, 234, 235, 245, or 246). On the other hand, Cys residues in the cytoplasmic half of helix IV (position 125 or 129) cross-link with Cys residues in the cytoplasmic half of helix XI (position 350, 353, or 354), while paired Cys residues at the periplasmic ends of the two helices do not cross-link. The results indicate that helices IV and VII cross in a scissors-like manner with the cytoplasmic end of helix IV tilting toward helix XI.  相似文献   

4.
Wu J  Hardy D  Kaback HR 《Biochemistry》1999,38(8):2320-2325
The six N-terminal transmembrane helices (N6) and the six C-terminal transmembrane helices (C6) in lactose permease, each containing a single Cys residue, were coexpressed, and cross-linking was studied. The proximity of paired Cys residues in helices V and VII, VIII, or X was studied by thiol-specific chemical cross-linking. The results demonstrate that Cys residues in the periplasmic half of helix V cross-link with Cys residues in the periplasmic half of helix VII. In contrast, no cross-linking is evident with paired Cys residues in the cytoplasmic halves of helices V and VII. Moreover, Cys residues on one entire face of helix V cross-link with Cys residues on one face of helix VIII. Finally, paired Cys residues at the cytoplasmic ends of helices V and X cross-link, but no cross-linking is observed when paired Cys residues are placed at the periplasmic ends of the two helices. Taken together, the results indicate that the periplasmic halves of helices V and VII are in close proximity and that the two helices tilt away from one another toward the cytoplasmic side of the membrane. Furthermore, helices V and VIII are in close proximity throughout their lengths and do not tilt appreciably with respect to one another, and helices V and X are in close proximity at the cytoplasmic but not at the periplasmic face of the membrane.  相似文献   

5.
Voss J  Wu J  Hubbell WL  Jacques V  Meares CF  Kaback HR 《Biochemistry》2001,40(10):3184-3188
By exploiting substrate protection of Cys148 in lactose permease, a methanethiosulfonate nitroxide spin-label was directed specifically to one of two Cys residues in a double-Cys mutant, followed by labeling of Cys148 with a thiol-reactive chelator that binds Gd(III) quantitatively. Distances between bound Gd(III) and the nitroxide spin-label were then studied by electron paramagnetic resonance. The results demonstrate that the Gd(III)-induced relaxation effects on nitroxides at positions 228, 226 (helix VII), and 275 (helix VIII) agree qualitatively with results obtained by studying spin-spin interactions [Wu, J., Voss, J., et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 10123-10127]. Thus, a nitroxide attached to position 228 (helix VII) is closest to the lanthanide at position 148 (helix V), a nitroxide at position 275 (helix VIII) is further away, and the distance between positions 226 (helix VII) and 148 is too long to measure. However, the Gd(III)-spin-label distances are significantly longer than those estimated from nitroxide-nitroxide interactions between the same pairs due to the nature of the chelator. Although the results provide strong confirmation for the contention that helix V lies close to both helices VII and VIII in the tertiary structure of lactose permease, other methods for binding rare earth metals are discussed which do not involve the use of bulky chelators with long linkers.  相似文献   

6.
The melibiose carrier of Escherichia coli is a transmembrane protein that comprises 12 transmembrane helices connected by periplasmic and cytoplasmic loops, with both the N- and C-termini located on the cytoplasmic side. Our previous studies of second-site revertants suggested proximity between several helices, including helices XI and I. In this study, we constructed six double cysteine mutants, each having one cysteine in helix I and the other in helix XI: three mutants, K18C/S380C, D19C/S380C, and F20C/S380C, have their cysteine pairs near the cytoplasmic side of the carrier, and the other three, T34C/G395C, D35C/G395C, and V36C/G395C, have their cysteine pairs near the periplasmic side. In the absence of substrate, disulfide formations catalyzed by iodine and copper-(1,10-phenanthroline)(3) indicate that helix I and helix XI are in immediate proximity to each other on the periplasmic side but not on the cytoplasmic side, as shown by protease cleavage analyses. We infer that the two helices are tilted with respect to each other, with the periplasmic sides in close proximity.  相似文献   

7.
Wolin CD  Kaback HR 《Biochemistry》2000,39(20):6130-6135
Glu126 (helix IV) and Arg144 (helix V) in the lactose permease of Escherichia coli are critical for substrate binding and transport, and the two residues are in close proximity and charge-paired. By using a functional permease construct with two tandem factor Xa protease sites in the cytoplasmic loop between helices IV and V, it is shown here that Cys residues in place of Glu126 and Arg144, as well as Ala122 and Val149, spontaneously form disulfide bonds in situ, indicating that this region of transmembrane domains IV and V is in the alpha-helical conformation. To determine if the local structure or environment is perturbed by the presence of an unpaired charge, either Glu126 or Arg144 or both were replaced with Ala, and cross-linking between the Cys pair Ala122-->Cys/Val149-->Cys was studied. Ala replacement for Arg144 causes a marked decrease in cross-linking, while Ala replacement for Glu126 alone or for both Glu126 and Arg144 has little effect. The data provide strong support for the argument that Glu126 and Arg144 are within close proximity and suggest that an unpaired carboxylate at position 126 causes a structural change at the interface between helices IV and V.  相似文献   

8.
Sun J  Voss J  Hubbell WL  Kaback HR 《Biochemistry》1999,38(10):3100-3105
Site-directed thiol cross-linking indicates that the first periplasmic loop (loop I/II) in the lactose permease of Escherichia coli is in close proximity to loops VII/VIII and XI/XII [Sun, J., and Kaback, H. R. (1997) Biochemistry 36, 11959-11965]. To determine whether thiol cross-linking reflects proximity as opposed to differences in the reactivity and/or dynamics of the Cys residues that undergo cross-linking, single-Cys mutants in loops I/II, VII/VIII, and XI/XII and double-Cys mutants in loop I/II and VII/VIII or XI/XII were purified and labeled with a sulfhydryl-specific nitroxide spin label. The labeled mutants were then analyzed by electron paramagnetic resonance (EPR) spectroscopy, and interspin distance was estimated from the extent of line shape broadening in the double-labeled proteins. Out of six paired double-Cys mutants that exhibit thiol cross-linking, five display significant spin-spin interaction. Furthermore, there is a qualitative correlation between distances estimated by site-directed cross-linking and EPR. Taken as a whole, the results are consistent with the conclusion that site-directed thiol cross-linking is primarily a reflection of proximity.  相似文献   

9.
Ermolova N  Madhvani RV  Kaback HR 《Biochemistry》2006,45(13):4182-4189
To complete a study on site-directed alkylation of Cys replacements in the lactose permease of Escherichia coli (LacY), the reactivity of single-Cys mutants in helices I, III, VI, and XI, as well as some of the adjoining loops, with N-[14C]ethylmaleimide (NEM) or methanethiosulfonate ethylsulfonate (MTSES) was studied in right-side-out membrane vesicles. With the exception of several positions in the middle of helix I, which either face the bilayer or are in close proximity to other helices, the remaining Cys replacements react with the membrane-permeant alkylating agent NEM. In helices III and XI, most Cys replacements are also alkylated by NEM except for positions that face the bilayer. The reactivity of Cys replacements in helix VI is noticeably lower and only 45% of the replacements label. Binding of sugar leads to significant increases in the reactivity of Cys residues that are located primarily at the same level as the sugar-binding site or in the periplasmic half of each helix. Remarkably, studies with small, impermeant MTSES show that single-Cys replacements in the cytoplasmic portions of helices I and XI, which line the inward-facing cavity, are accessible to solvent from the periplasmic surface of the membrane. Moreover, addition of ligand results in increased accessibility of Cys residues to the aqueous milieu in the periplasmic region of the helices, which may reflect structural rearrangements leading to opening of an outward-facing cavity. The findings are consistent with the X-ray structure of LacY and with the alternating access model [Abramson, J., Smirnova, I., et al. (2003) Science 301, 610-615].  相似文献   

10.
Kwaw I  Sun J  Kaback HR 《Biochemistry》2000,39(11):3134-3140
The N- and C-terminal halves of lactose permease, each with a single-Cys residue in a cytoplasmic loop, were coexpressed, and cross-linking was studied in the absence or presence of ligand. Out of the 68 paired-Cys mutants in cytoplasmic loops IV/V and VIII/IX or X/XI, three pairs in loop IV/V and X/XI, (i) Arg135 --> Cys/Thr338 --> Cys, (ii) Arg134 --> Cys/Val343 --> Cys, and (iii) Arg134 --> Cys/Phe345 --> Cys, form a spontaneous disulfide bond, indicating that loops IV/V and X/XI are in close proximity. In addition, specific paired-Cys residues in loop IV/V (132-138) and loop VIII/IX (282-290) or loop X/XI (335-345) cross-link with iodine and/or the homobifunctional cross-linking agents N, N'-o-phenylenedimaleimide, N,N'-p-phenylenedimaleimide, and 1, 6-bis(maleimido)hexane. The results demonstrate that loop IV/V is close to both loop VIII/IX and loop X/XI. On the other hand, similar though less extensive cross-linking studies indicate that neither the N terminus nor loop II/III appear to be close to loops VIII/IX or X/XI. The findings suggest that the longer cytoplasmic loops are highly flexible and interact in a largely random fashion. However, although a Cys residue at position 134 in loop IV/V, for example, is able to cross-link with a Cys residue at each position in loop VIII/IX or loop X/XI, Cys residues at other positions in loop IV/V exhibit markedly different cross-linking patterns. Therefore, although the domains appear to be very flexible, the interactions are not completely random, suggesting that there are probably at least some structural constraints that limit the degree of flexibility. In addition, evidence is presented suggesting that ligand binding induces conformational alterations between loop IV/V and loop VIII/IX or X/XI.  相似文献   

11.
Venkatesan P  Kwaw I  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10641-10648
Site-directed sulfhydryl modification in situ is employed to investigate structural and dynamic features of transmembrane helix VII and the beginning of the periplasmic loop between helices VII and VIII (loop VII/VIII). Essentially all of the Cys-replacement mutants in the periplasmic half of the helix and the portion of loop VII/VIII tested are labeled by N-[(14)C]ethylmaleimide (NEM). In contrast, with the exception of two mutants at the cytoplasmic end of helix VII, none of the mutants in the cytoplasmic half react with the alkylating agent. Labeling of most of the mutants is unaltered by ligand at 25 degrees C. However, at 4 degrees C, conformational changes induced by substrate binding become apparent. In the presence of ligand, permease mutants with a Cys residue at position 241, 242, 244, 245, 246, or 248 undergo a marked increase in labeling, while the reactivity of a Cys at position 238 is slightly decreased. Labeling of the remaining Cys-replacement mutants is unaffected by ligand. Studies with methanethiosulfonate ethylsulfonate (MTSES), a hydrophilic impermeant thiol reagent, show that most of the positions that react with NEM are accessible to MTSES; however, the two NEM-reactive mutants at the cytoplasmic end of helix VII and position 236 in the middle of the membrane-spanning domain are not. The findings demonstrate that positions in helix VII that reflect ligand-induced conformational changes are located in the periplasmic half and accessible to the aqueous phase from the periplasmic face of the membrane. In the following papers in this issue (Venkatesan, P., Lui, Z., Hu, Y., and Kaback H. R.; Venkatesan, P., Hu, Y., and Kaback H. R.), the approach is applied to helices II and X.  相似文献   

12.
Venkatesan P  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10656-10661
Helix X in the lactose permease of Escherichia coli contains two residues that are irreplaceable with respect to active transport, His322 and Glu325, as well as Lys319, which is charge-paired with Asp240 in helix VII. Structural and dynamic features of transmembrane helix X are investigated here by site-directed thiol modification of 14 single-Cys replacement mutants with N-[(14)C]ethylmaleimide (NEM) in right-side-out membrane vesicles. Permease mutants with a Cys residue at position 326, 327, 329, 330, or 331 in the cytoplasmic half of the transmembrane domain are alkylated by NEM at 25 degrees C, a mutant with Cys at position 315 at the periplasmic surface is labeled in the presence of substrate exclusively, and mutants with Cys at positions 317, 318, 320, 321, 324, 328, 332, or 333 do not react with NEM under the conditions tested. Binding of substrate causes increased labeling of a Cys residue at position 315 and decreased labeling of Cys residues at positions 326, 327, and 329. Studies with methanethiosulfonate ethylsulfonate indicate that Cys residues at positions 326, 329, 330, and 331 in the cytoplasmic half are accessible to the aqueous phase from the periplasmic face of the membrane. Ligand binding results in clear attenuation of solvent accessibility of Cys at position 326 and a marginal increase in accessibility of Cys at position 327 to solvent. The findings indicate that the cytoplasmic half of helix X is more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that reflect ligand-induced conformational changes are located on the same face of helix X as Lys319, His322, and Glu325.  相似文献   

13.
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant.  相似文献   

14.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.  相似文献   

15.
Zhang W  Hu Y  Kaback HR 《Biochemistry》2003,42(17):4904-4908
Site-directed sulfhydryl modification of transmembrane helix IX in the lactose permease of Escherichia coli was studied in right-side-out membrane vesicles with the thiol-specific reagents N-[(14)C]ethylmaleimide (NEM) and methanethiosulfonate ethylsulfonate (MTSES) which are permeant and impermeant, respectively. Out of approximately 20 mutants with a single Cys residue at each position in the helix, only five mutants label with NEM. (i) Cys residues at positions 291, 308, and 310 label at 25 degrees C, and binding of substrate has no effect. (ii) Cys residues at positions 295 and 298 label only in the presence of substrate. NEM labeling at 0 degrees C indicates that alkylation of Cys residues at positions 295 and 308 is dependent on the thermal motion of the protein. In contrast, temperature has little effect on labeling of Cys residues at positions 291, 298, and 310. Interestingly, pretreatment with MTSES blocks NEM labeling of all the mutants. The findings demonstrate that the face of helix IX on which Arg302 is located is involved in ligand-induced conformational changes and accessible to water from the periplasmic surface of the membrane. Since Arg302 facilitates deprotonation of Glu325 (helix X) during turnover [Sahin-Tóth, M., and Kaback, H. R. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6068-6073], the findings are consistent with the idea that this face of helix IX may comprise part of the H(+) translocation pathway.  相似文献   

16.
Glu126 and Arg144 in helices IV and V, respectively, in the lactose permease of Escherichia coli, which play an indispensable role in substrate binding, are charge-paired and in close proximity [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807; Zhao, M., Zen, K.-C., et al. (1999) Biochemistry 38, 7407-7412]. Since hydropathy plots indicate that these residues are at the membrane-water interface at the cytoplasmic surface of the membrane, site-directed nitroxide scanning electron paramagnetic resonance (EPR) has been carried out on this region of the permease. Thirty-one single-Cys permease mutants were spin-labeled and examined by conventional and power saturation EPR. The motional freedom of the side chains, as well as accessibility to O(2) or potassium chromium oxalate (CrOx), indicates that the loop between helices IV and V (loop IV/V) is considerably smaller than predicted by hydropathy plots, extending only from about Val132 to Phe138 and that Glu126 and Arg144 are probably within the membrane. Although ligand binding has no effect on the mobility of the labeled side chains, a marked increase in CrOx and O(2) accessibility is observed at position 137, as well as significant changes in accessibility to CrOx on one face of helix V. It is concluded that ligand binding induces a conformational change in the vicinity of the binding site, resulting in increased accessibility of position 137 in loop IV/V to solvent.  相似文献   

17.
In a previous study 23 residues in helix XI of the cysteine-less melibiose carrier were changed individually to cysteine. Several of these cysteine mutants (K377C, A383C, F385C, L391C, G395C) had low transport activity and they were white on melibiose MacConkey fermentation plates. After several days of incubation of these white clones on melibiose MacConkey plates a rare red mutant appeared. The plasmid DNA was then isolated and sequenced. The two second site revertants from K377C were I22S and D59A. This change of aspartic acid to a neutral residue suggests that physiologically there is an interaction between K377 and D59 (possibly a salt bridge). The revertants from A383C were in positions 20 (F20L) and 22 (I22S and I22N). Revertants of F385C were intrahelical changes (I387M and A388G) and a change in C-terminal loop (R441C). Revertants of L391C were in helix I (I22N, I22T and D19E) and helix V (A152S). Revertants of G395C were in helix I (D19E and I22N). We suggest that there is an interaction between helix XI and helices I, II, and V and proximity between these helices.  相似文献   

18.
Biochemical, luminescence and mass spectroscopy approaches indicate that Trp-151 (helix V) plays an important role in hydrophobic stacking with the galactopyranosyl ring of substrate and that Glu-269 (helix VIII) is essential for substrate affinity and specificity. The x-ray structure of the lactose permease (LacY) with bound substrate is consistent with these conclusions and suggests that a possible H-bond between Glu-269 and Trp-151 may play a critical role in the architecture of the binding site. We have now probed this relationship by exploiting the intrinsic luminescence of a single Trp-151 LacY with various replacements for Glu-269. Mutations at position 269 dramatically alter the environment of Trp-151 in a manner that correlates with binding affinity of LacY substrates. Furthermore, chemical modification of Trp-151 with N-bromosuccinimide indicates that Glu-269 forms an H-bond with the indole N. It is concluded that 1) an H-bond between the indole N and Glu-269 optimizes the formation of the substrate binding site in the inward facing conformation of LacY, and 2) the disposition of the residues implicated in sugar binding in different conformers suggests that sugar binding by LacY involves induced fit.  相似文献   

19.
Venkatesan P  Liu Z  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10649-10655
Cys-scanning mutagenesis of helix II in the lactose permease of Escherichia coli [Frillingos, S., Sun, J. et al. (1997) Biochemistry 36, 269-273] indicates that one face contains positions where Cys replacement or Cys replacement followed by treatment with N-ethylmaleimide (NEM) significantly inactivates the protein. In this study, site-directed sulfhydryl modification is utilized in situ to study this face of helix II. [(14)C]NEM labeling of 13 single-Cys mutants, including the nine NEM-sensitive Cys replacements, in right-side-out membrane vesicles is examined. Permease mutants with a single-Cys residue in place of Gly46, Phe49, Gln60, Ser67, or Leu70 are alkylated by NEM at 25 degrees C in 10 min, and mutants with Cys in place of Thr45 and Ser53 are labeled only in the presence of ligand, while mutants with Cys in place of Ile52, Ser56, Leu57, Leu62, Phe63, or Leu65 do not react. Binding of substrate leads to a marked increase in labeling of Cys residues at positions 45, 49, or 53 in the periplasmic half of helix II and a slight decrease in labeling of Cys residues at positions 60 or 67 in the cytoplasmic half. Labeling studies with methanethiosulfonate ethylsulfonate (MTSES) show that positions 45 and 53 are accessible to solvent in the presence of ligand only, while positions 46, 49, 67, and 70 are accessible to solvent in the absence or presence of ligand. Position 60 is also exposed to solvent, and substrate binding causes a decrease in solvent accessibility. The findings demonstrate that the NEM-sensitive face of helix II participates in ligand-induced conformational changes. Remarkably, this membrane-spanning face is accessible to the aqueous phase from the periplasmic side of the membrane. In the following paper in this issue [Venkatesan, P., Hu, Y., and Kaback, H. R. (2000) Biochemistry 39, 10656-10661], the approach is applied to helix X.  相似文献   

20.
Rimon A  Tzubery T  Galili L  Padan E 《Biochemistry》2002,41(50):14897-14905
The unique trypsin cleavable site of NhaA, the Na(+)/H(+) antiporter of Escherichia coli, was exploited to detect a change in mobility of cross-linked products of NhaA by polyacrylamide gel electrophoresis. Double-Cys replacements were introduced into loops, one on each side of the trypsin cleavage site (Lys 249). The proximity of paired Cys residues was assessed by disulfide cross-linking of the two tryptic fragments, using three homobifunctional cross-linking agents: 1,6-bis(maleimido)hexane (BMH), N,N'-o-phenylenedimaleimide (o-PDM), and N,N'-p-phenylenedimaleimide (p-PDM). The interloop cross-linking was found to be very specific, indicating that the loops are not merely random coils that interact randomly. In the periplasmic side of NhaA, two patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently between the double-Cys replacements A118C/S286C, N177C/S352C, and H225C/S352C; (b) only BMH cross-links the double-Cys replacements A118C/S352C, N177C/S286C, and H225C/S286C. In the cytoplasmic side of NhaA, three patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently the pairs of Cys replacements L4C/E252C, S146C/L316C, S146C/R383C, and E241C/E252C; (b) BMH and p-PDM cross-link efficiently the pairs of Cys replacements S87C/E252C, S87C/L316C, and S146C/E252C; (c) none of the reagents cross-links the double-Cys replacements L4C/L316C, L4C/R383C, S87C/R383C, A202C/E252C, A202C/L316C, A202C/R383C, E241C/L316C, and E241C/R383C. The data reveal that the N-terminus and loop VIII-IX that have previously been shown to change conformation with pH are in close proximity within the NhaA protein. The data also suggest close proximity between N-terminal and C-terminal helices at both the cytoplasmic and the periplasmic face of NhaA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号