首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.  相似文献   

3.
Studies on estrogen receptor (ER)-positive human breast cancer cell lines have shown that estrogen treatment positively modulates the expression of the genes encoding transforming growth factor-alpha (TGF alpha), 52-kDa cathepsin-D, and pS2. To determine whether these genes would be similarly regulated by estrogens in normal human mammary epithelial cells, we stably transfected immortal nontumorigenic human mammary epithelial cells with an ER-encoding expression vector. ER-negative tumor cells were also transfected for comparison. Levels of TGF alpha and 52-kDa cathepsin-D mRNA were enhanced by estrogen treatment of both ER-transfected immortal and tumorigenic cells, demonstrating that the ER by itself is sufficient to elicit estrogenic regulation of the expression of these genes. In contrast, expression of the pS2 gene was detected only in the ER-transfected tumor cells. The ER in both cell lines is capable of recognizing the pS2 promoter, however, since estrogen enhanced the activity of an introduced pS2-CAT reporter plasmid in transient expression analyses. These and other experiments with somatic cell hybrids between the immortal cells and ER+/pS2+ MCF-7 tumor cells, where pS2 gene expression is extinguished, support the conclusion that the immortal nontumorigenic cells encode gene products that block endogenous pS2 expression. These results also imply that such repressors are not active in the tumor cells.  相似文献   

4.
This study examines the expression of anchorage independence and tumorigenicity in early cultures of oral rat keratinocytes. The epithelial cell lines originated from the palatal and the lingual mucosa of rats that had been painted with the carcinogen 4-nitroquinoline N-oxide. The colony forming efficiency (CFE) in gel culture of the cell lines derived from five squamous cell carcinomas of the tongue and palate predominantly increased with passage in culture. Carcinoma-derived cell lines that had a relatively high CFE (greater than 2.5%) formed tumours when transplanted to athymic mice, but cells in which the CFE was less than 2.5% were non-tumorigenic. Keratinocytes from a dysplastic palatal lesion were immortal, anchorage dependent and non-tumorigenic. A lingual papilloma cell line consistently expressed a very low CFE but was tumorigenic at the higher culture passages. The results show that the routine passage of cells in culture leads to the emergence of the anchorage independent and tumorigenic phenotypes in keratinocytes of malignant origin and, further, suggest that anchorage independence and tumorigenicity may exist as distinct phenotypes, with anchorage independence preceding tumorigenicity.  相似文献   

5.
6.
7.
In the heterozygous T lymphoma line LDHB, variants which have lost the expression of individual H-2 class I genes are spontaneously generated in vitro at a frequency of 10(-1)-10(-2). A cell line (HK13) in which the class I gene Kk is stably expressed (frequency of loss variants less than 10(-4) was selected from LDHB cells by fluorescence activated cell sorting. Further selection of HK13 cells for high Kk expression led to the isolation of the HK22 line which expresses twice as much Kk as HK13. From HK13 and HK22 cells, spontaneous structural variants of Kk having lost individual serological determinants of the Kk wild-type molecule, were isolated by fluorescence activated cell sorting. Such variants occur at a frequency of 10(-6)-10(-7) per cell per generation. The analysis of these variants indicates that they carry mutations in the Kk structural gene and that HK13 cells express a single Kk gene which appears to be duplicated in HK22 cells. We did not find evidence for the generation of variants expressing 'alien' class I products in the LDHB cell line. The instability of class I gene expression in LDHB cells and the transition to stable expression may represent steps of T-cell differentiation in the thymus.  相似文献   

8.
9.
The research of carcinogenetic mechanisms of breast cancer in different ethnic backgrounds is an interesting field, as clinical features of breast cancers vary among races. High premenopausal incidence is distinctive in East-Asian breast cancer. However, human cell lines derived from Asian primary breast tumor are rare. To provide alternative cell line models with a relevant genetic background, we aimed to establish breast cancer cell lines from Taiwanese patients of Han-Chinese ethnicity. Fresh tissue from mammary tumors were digested into organoids, plated and grown in basal serum-free medium of human mammary epithelial cells (HuMEC) with supplements. Cells were further enriched by positive selection with CD326 (epithelial cell adhesion molecule; EpCAM)-coated micro-magnetic beads. Two breast cancer cell lines derived from premenopausal women were successfully established by this method, and named Chang-Gung Breast Cancer 01 (CGBC 01) and 02 (CGBC 02). These two cell lines had a similar phenotype with weak expression of estrogen receptor (ER), progesterone receptor (PR), and without amplification of receptor tyrosine protein kinase erbB-2 (HER2/neu). Genome-wide Single Nucleotide Polymorphism (SNP) array showed multiple copy number alterations in both cell lines. Based on gene expression profiles, CGBC 01 and 02 were clustered into basal-like subtype with reference to the breast cancer cell line gene expression database. The tumorigenicity of both cell lines was extremely low in both anchorage-independence assay and transplantation into the mammary fat pads of nude mice. CGBC 01 and CGBC 02 are low tumorigenic breast cancer cell lines, established from Han-Chinese premenopausal breast cancer patients, which serve as in vitro models in studying the biological features of Asian breast cancer.  相似文献   

10.
Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMECs), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5) were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrated that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. Whereas normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMECs under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. We discuss some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from normal mammary epithelial cells as regards the response to acute oxidative stress.  相似文献   

11.
Tumour metastasis occurs as a result of a cascade of events including alterations in the expression of various genes. The identification of such genes is essential to understanding formation of metastasis. In a previous study, highly metastatic (LN4.D6) and poorly metastatic (CAb.D5) cell lines were obtained from the rat mammary adenocarcinoma cell line R3230AC. Subtractive hybridization was used to identify differentially expressed genes between these two cell lines. We identified eight cDNA clones in CAb.D5 and six cDNA clones in LN4.D6 that were differentially expressed. One of the cDNA clones in each cell line had no homology with known sequences. Expression patterns of these differentially expressed genes were examined in a pair of rat mammary and prostate adenocarcinoma cell lines. Compared with cell lines examined, cDNA FF-10 was only expressed in CAb.D5; however, cDNA RB-8, RE-1, RF-5 were only expressed in the highly metastatic LN4.D6. No correlation was observed between expression patterns of the differentially expressed genes and metastatic potential of these cells. However, differential expression of genes, especially cytokeratins (CK8 and CK5) and collagens (III and IV) between highly metastatic and low metastatic rat mammary adenocarcinoma cell lines might initiate further investigation of these genes in metastatic process.  相似文献   

12.
The tumorigenicity of HeLa cells in nude mice can be suppressed by the addition of a normal human chromosome 11 in somatic cell hybrids. We have attempted to identify specific genes involved in this phenomenon by transfecting a complementary DNA expression library into a tumorigenic HeLa-fibroblast hybrid. A cell line designated F2 was isolated which displayed morphological features of the nontumorigenic hybrids, demonstrated reduced tumorigenicity in nude mice, and showed an 85% reduction in alkaline phosphatase, a consistent marker of the tumorigenic phenotype in these cells. F2 contained a single exogenous complementary DNA, which was recovered by polymerase chain reaction and designated HTS1 because of its potential association with "HeLa tumor suppression." Northern blot studies suggested differential regulation of the HTS1 gene dependent on the tumorigenicity of the cell. In nontumorigenic hybrids, RNA species of 2.8, 3.1, and 4.6 kilobases were identified. In two tumorigenic hybrid lines, the 2.8-kilobase species was markedly reduced or absent. Similarly, three nontumorigenic human keratinocyte lines expressed all three RNA species, whereas several tumorigenic cervical carcinoma cell lines lacked the 2.8-kilobase species. Chromosome localization studies mapped the HTS1 gene to chromosome 11p15, a region of chromosome 11 that is believed to contain a tumor suppressor gene. These findings indicate that HTS1 represents a novel chromosome 11 gene which may be a target of the tumor suppressor gene active in this system.  相似文献   

13.
C L Goolsby  M Steiner  J Nemeth 《Cytometry》1991,12(8):748-756
In vitro investigation of the multistep neoplastic progression which occurs during transformation of human cells has been hindered by resistance of human cells to both immortalization and tumorigenicity (Mut. Res. 199; 273, 1988). Previously our laboratory established a cell line, HSF4-T12, by transfection of normal human foreskin fibroblasts with the plasmid pSV3-neo which contains the early genes of simian virus 40 (SV40). A multistep progression in karyotypic alterations and transformed phenotype occurred resulting in a neoplastic cell line that was immortal, transformed, and tumorigenic. We have examined changes in the SV40 proteins, large T (T-antigen) and small t (t-antigen) antigens, and in the cellular protein, p53, during progressive transformation of these cells. Total viral protein expression relative to total cellular protein increased following immortalization of HSF4-T12 as did the ratio of T-antigen to t-antigen. Interestingly, no significant change in DNA content accompanied immortalization. However, during the progressive in vitro transformation of HSF4-T12 which occurred primarily post-immortalization, DNA index increased to 1.6 but only small additional increases in T-antigen expression were seen. No consistent or critical role for t-antigen in development of the tumorigenic phenotype was found in this system.  相似文献   

14.
High-energy (HZE) heavy ions, when compared to low-LET radiation, are highly effective in inducing gene mutation, chromosomal aberrations and neoplastic transformation. However, the underlying molecular mechanisms are not clearly understood. We have recently shown that the down-regulation of Betaig-h3 expression is causally linked to the tumorigenic phenotype of papillomavirus-immortalized human bronchial epithelial (BEP2D) cells treated with high-LET alpha-particle radiation. Using the BEP2D cell culture system, a radiation-induced transformation model has been established by a single 60-cGy dose of (56)Fe heavy-ion radiation. To determine whether the Betaig-h3 gene is involved in (56)Fe ion-induced tumorigenesis, the expression levels of the Betaig-h3 gene in tumorigenic cell lines and the ability of in vivo tumor suppression through the reintroduction of the Betaig-h3 gene in tumorigenic cells were determined. We found that the expression level of this gene is markedly decreased in three tumorigenic cell lines ((56)FeT1-T3) compared with parental BEP2D cells. Ectopic expression of its cDNA in the (56)FeT2 tumorigenic cells significantly suppressed their tumorigenicity. Although biologically active TGFB1 is elevated in two of three tumorigenic cell lines, all these cell lines are resistant to the induction of Betaig-h3 expression by incubating the transformed cells with exogenous TGFB1 relative to control cells. Our data strongly suggest that down-regulation of Betaig-h3 expression results from the defect in the TGFB1 signaling pathway and plays a pivotal role in the tumorigenic process induced by (56)Fe heavy-ion radiation.  相似文献   

15.
16.
In mammary tumors induced by the mouse mammary tumor virus (MMTV), the int-1 gene is frequently activated by adjacent proviral insertions and is thereby strongly implicated in tumorigenesis. To seek a direct biological effect of int-1 that would validate its proposed role as an oncogene, we constructed a retrovirus vector containing the gene and examined its effects on tissue culture cells. Expression of int-1 in a mammary epithelial cell line caused striking morphological changes, unrestricted growth at high cell density, and focus formation on a monolayer, although the cells were not tumorigenic in vivo. This partial transformation induced by int-1 was not observed in cells infected by an otherwise identical virus bearing a frameshift mutation in the gene. These findings strongly support the hypothesis that int-1 plays a functional role in MMTV-induced mammary tumorigenesis.  相似文献   

17.
18.
The techniques of somatic cell hybridization have provided a valuable means of studying mechanisms of regulation of mammalian cell differentiation and transformation. Most previous studies have indicated that fusions between tumorigenic and nontumorigenic cells result in hybrid cells that are usually tumorigenic. In recent years it has been demonstrated that the phenotypic expression of tumorigenicity is at least partially due to the extensive chromosome loss that occurs in most interspecific and some intraspecific hybrid cells. In the present study we have utilized enucleation techniques that permit cells to be divided into nuclear (karyoplast) and cytoplasmic (cytoplast) cell fragments. Even though these nuclear and cytoplasmic fragments are metabolically stable for short periods of time, in our hands they ultimately degenerate. Viable cells can be reconstructed by PEG-induced fusion of karyoplasts to cytoplasts. Since reconstructed cells apparently do not segregate chromosomes, they may provide a clearer understanding of the interactions between the nucleus and the cytoplasm in the control of the expression of tumorigenicity. We have reconstructed cells using karyoplasts from the tumorigenic Y-1 cell line and cytoplasts from a nontumorigenic cell line, A-MT-BU-A1. In addition we have reconstructed cells containing Y-1 cytoplasts and A-MT-BU-A1 karyoplasts. The reconstructed cells porduced were assayed for tumorigenicity by their ability to grow in soft agar and in nude mice. The results of these experiments indicate that the reconstructed cells containing a tumorigenic nucleus and a nontumorigenic cytoplasm ultimately are tumorigenic and conversely the reconstructed cells containing a nontumorigenic nucleus and a tumorigenic cytoplasm are nontumorigenic. These experiments support the concept that with these cell lines the nucleus (karyoplast) is sufficient to control the phenotypic expression of tumorigenicity.  相似文献   

19.
Five simian virus 40 (SV40)-hepatocyte cell lines were examined for tumorigenicity and the effect of in vitro passage on the expression of four liver-specific genes (albumin, transferrin, alpha 1-antitrypsin, and phosphoenolpyruvate carboxykinase), two oncogenes (c-Ha-ras and c-raf), and two genes associated with hepatocarcinogenesis (alpha-fetoprotein and placental-type glutathione-S-transferase). At low passage (12 to 22), all five cell lines expressed the four liver-specific genes at levels similar to those in the liver and were not tumorigenic or were weakly tumorigenic. At high passage (33 to 61), the cell lines formed carcinomas, and four out of five cell lines produced primary tumors that metastasized. At least two cell lines produced well-differentiated hepatocellular carcinomas that expressed liver-specific RNAs. Levels of expression of liver-specific genes changed with time in culture. Some of the changes in liver-specific gene expression in the tumor tissue (such as for the phosphoenolpyruvate carboxykinase gene) paralleled those that occurred with in vitro passage, while other changes (such as for the albumin gene) did not parallel those that occurred with in vitro passage. Correlations between enhanced expression of c-Ha-ras and tumorigenic potential and between the process of SV40 immortalization and induced expression of c-raf and glutathione-S-transferase-P were observed. Induction of alpha-fetoprotein was detected with in vitro and in vivo passage only in the CWSV14 cell line and was paralleled by diminished albumin expression. In conclusion, we developed a model system with five SV40-hepatocyte cell lines, tumors induced by them, and tumor cell lines to examine changes in gene expression that accompany the progression from a normal cell to a hepatocellular carcinoma. Because the SV40-hepatocyte cell lines and tumor cell lines remain highly differentiated and vary in the magnitude of expression of specific genes, they can be used to study the molecular mechanisms regulating gene expression, in particular those regulating specific genes associated with differentiation.  相似文献   

20.
It has been hypothesized that genomic instability is an important component of tumorigenesis. In an attempt to establish this relationship, we determined the frequencies with which two nontumorigenic and four tumorigenic rat liver epithelial cell lines underwent a particular type of genetic instability, gene amplification. By exposing cells to N-(phosphonoacetyl)-L-aspartate (PALA), a drug which specifically inhibits the aspartate transcarbamylase activity of the multifunctional CAD enzyme and selects for amplification of the CAD gene, we observed a striking parallel between the ability of these cell lines to become resistant to this drug and the ability of these same cells to form tumors after injection into day-old syngeneic rats. Cells of one highly tumorigenic line became resistant to PALA greater than 70 times more often than those of a non-tumorigenic line. Molecular analyses of eight independent PALA-resistant subclones confirmed that, in each case, this resistance was due to amplification of the CAD gene. Thus, our results demonstrate the relationship between tumorigenicity and at least one measure of genomic instability, CAD gene amplification. The method developed in this study provides a quantitative, rapid indicator of tumorigenicity and should prove useful in trying to elucidate the underlying basis of genomic instability in neoplastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号