首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The mechanisms that mediate the various effects of melatonin in mammalian tissues are not always known. Therefore, the aim of this study was to investigate whether MT(1) and MT(2) melatonin receptors are expressed in certain tissues of the rat. The expression of MT(1) and MT(2) melatonin receptor mRNA was determined using a real-time quantitative RT-PCR method. In addition, we examined whether mRNA for either subtype of receptor shows any difference in the expression between midnight and noon, similar to the changes in melatonin concentrations in plasma and tissue samples. MT(1) and MT(2) melatonin receptor mRNAs were found in the rat hypothalamus, retina and small intestine. We also showed a low expression of MT(2) mRNA in the rat liver and heart SA node. In the heart apex and the Harderian gland, no appearance of either of the receptor mRNAs was detectable. A significant difference in the expression of MT(1) mRNA between day and night was found in the hypothalamus. In conclusion, our findings suggest that at least some effects of melatonin are mediated through membrane MT(1) and MT(2) receptors in the hypothalamus, the retina and the small intestine. Down-regulation of receptors might be one reason for the difference in the hypothalamic MT(1) melatonin receptor mRNA expression between midnight and noon. In the liver and the heart SA node, the physiological significance of possible MT(2) receptors remains unclear. According to our negative midnight and noon results in the Harderian gland and heart apex melatonin may exert its effect on these tissues by a non-receptor mechanism.  相似文献   

2.
Distribution of melatonin MT1 receptor immunoreactivity in human retina.   总被引:3,自引:0,他引:3  
Melatonin is synthesized in the pineal gland and retina during the night. Retinal melatonin is believed to be involved in local cellular modulation and in regulation of light-induced entrainment of circadian rhythms. The present study provides the first immunohistochemical evidence for the localization of melatonin 1a-receptor (MT1) in human retina of aged subjects. Ganglion, amacrine, and photoreceptor cells expressed MT1. In addition, MT1 immunoreactivity was localized to cell processes in the inner plexiform layer and to central vessels of the retina, as well as to retinal vessels but not to ciliary or choroidal vessels. These results support a variety of cellular and vascular effects of melatonin in the human retina. Preliminary evidence from patients with Alzheimer's disease (AD) revealed increased MT1 immunoreactivity in ganglion and amacrine cells, as well as in vessels. In AD cases photoreceptor cells were degenerated and showed low MT1 expression.  相似文献   

3.
One-third of the approximately 400 nonodorant G protein-coupled receptors (GPCRs) are still orphans. Although a considerable number of these receptors are likely to transduce cellular signals in response to ligands that remain to be identified, they may also have ligand-independent functions. Several members of the GPCR family have been shown to modulate the function of other receptors through heterodimerization. We show that GPR50, an orphan GPCR, heterodimerizes constitutively and specifically with MT(1) and MT(2) melatonin receptors, using biochemical and biophysical approaches in intact cells. Whereas the association between GPR50 and MT(2) did not modify MT(2) function, GPR50 abolished high-affinity agonist binding and G protein coupling to the MT(1) protomer engaged in the heterodimer. Deletion of the large C-terminal tail of GPR50 suppressed the inhibitory effect of GPR50 on MT(1) without affecting heterodimerization, indicating that this domain regulates the interaction of regulatory proteins to MT(1). Pairing orphan GPCRs to potential heterodimerization partners might be of clinical importance and may become a general strategy to better understand the function of orphan GPCRs.  相似文献   

4.
A series of tetrahydroisoquinolines has yielded potent MT(2) receptor antagonists, which are selective versus the MT(1) receptor.  相似文献   

5.
6.
The growth of estrogen‐receptor positive breast cancer cells is inhibited by the pineal gland hormone, melatonin. Concern has been raised that power‐line frequency and microwave electromagnetic fields (EMFs) could reduce the efficiency of melatonin on breast cancer cells. In this study we investigated the impact of EMFs on the signal transduction of the high‐affinity receptor MT1 in parental MCF‐7 cells and MCF‐7 cells transfected with the MT1 gene. The binding of the cAMP‐responsive element binding (CREB) protein to a promoter sequence of BRCA‐1 after stimulation with melatonin was analyzed by a gel‐shift assay and the expression of four estrogen‐responsive genes was measured in sham‐exposed breast cancer cells and cells exposed to a sinusoidal 50 Hz EMF of 1.2 µT for 48 h. In sham‐exposed cells, binding of CREB to the promoter of BRCA‐1 was increased by estradiol and subsequently diminished by treatment with melatonin. In cells exposed to 1.2 µT, 50 Hz EMF, binding of CREB was almost completely omitted. Expression of BRCA‐1, p53, p21WAF, and c‐myc was increased by estradiol stimulation and subsequently decreased by melatonin treatment in both cell lines, except for p53 expression in the transfected cell line, thereby proving the antiestrogenic effect of melatonin at molecular level. In contrast, in breast cancer cells transfected with MT1 exposed to 1.2 µT of the 50 Hz EMF, the expression of p53 and c‐myc increased significantly after melatonin treatment but for p21WAF the increase was not significant. These results convincingly prove the negative effect of EMF on the antiestrogenic effect of melatonin in breast cancer cells. Bioelectromagnetics 31:237–245, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Spleen is an important lymphoid organ which exerts immune activities throughout the life in mammals. In this study, we investigated the age- and sex-dependent effect of exogenous melatonin on expression pattern of MT1 and MT2 melatonin receptor proteins in spleen of laboratory Swiss albino mice in three different age-groups – 2, 4, and 8 months. The melatonin receptor expression patterns were studied by immunohistochemical localization and Western blot analysis. Immunohistochemical study showed reactivity of MT1 and MT2 melatonin receptors in spleen of both male and female mice. Exogenous melatonin significantly showed age- and sex-dependent expression pattern of MT1 receptor protein, while MT2 receptors showed only age-dependent differential expression patterns in both male and female mice. Therefore, this study may suggest that exogenous melatonin is modulating MT1 and MT2 receptor protein expression pattern in age- and sex-dependent manner in spleen of mice.  相似文献   

8.
A series of 4-substituted anilides with human melatonergic affinity is reported. Butyramides 26, 39, 42, 52, 57, and 58 all demonstrated subnanomolar MT(2) binding affinity and MT(2) selectivity of at least 70-fold over the MT(1) receptor. Compound 26 demonstrated full agonism at the MT(2) receptor.  相似文献   

9.
The gene encoding the MT1 melatonin receptor in sheep has a restriction fragment length polymorphism (RFLP) site to the MnlI enzyme whose incidence is associated to the expression of seasonality in several breeds. The aim of this study was to examine the relationship between this genetic marker and the physiological effects of MT1 receptor gene polymorphism on several seasonal functions in Ile-de-France ewes. The study was performed using 12 pairs of half-sib adult Ile-de-France ewes. Within each pair, ewes were selected on the basis of their genotype at the MnlI RFLP site: group +/+ and -/- (presence and absence of MnlI restriction site, respectively). No difference in the dates of the beginning, the end or the length of the breeding season was observed between groups during the two-year study. The seasonal changes in prolactin secretion were not different between groups. Similarly, wool growth rate and primary follicle activity, measured for one year, varied with the time of the year in the same way in the two groups. Our study therefore failed to show any relationship between MT1 polymorphism and reproductive seasonality in Ile-de-France ewes. This suggests that the influence of this polymorphism on the regulation of seasonal function is dependent upon the breed and/or environmental conditions. The MT1 polymorphism can explain only a small part of the genetic variability of seasonal functions and the implication of other genes must be investigated.  相似文献   

10.
In bile duct-ligated (BDL) rats, large cholangiocytes proliferate by activation of cAMP-dependent signaling. Melatonin, which is secreted from pineal gland as well as extrapineal tissues, regulates cell mitosis by interacting with melatonin receptors (MT1 and MT2) modulating cAMP and clock genes. In the liver, melatonin suppresses oxidative damage and ameliorates fibrosis. No information exists regarding the role of melatonin in the regulation of biliary hyperplasia. We evaluated the mechanisms of action by which melatonin regulates the growth of cholangiocytes. In normal and BDL rats, we determined the hepatic distribution of MT1, MT2, and the clock genes, CLOCK, BMAL1, CRY1, and PER1. Normal and BDL (immediately after BDL) rats were treated in vivo with melatonin before evaluating 1) serum levels of melatonin, bilirubin, and transaminases; 2) intrahepatic bile duct mass (IBDM) in liver sections; and 3) the expression of MT1 and MT2, clock genes, and PKA phosphorylation. In vitro, large cholangiocytes were stimulated with melatonin in the absence/presence of luzindole (MT1/MT2 antagonist) and 4-phenyl-2-propionamidotetralin (MT2 antagonist) before evaluating cell proliferation, cAMP levels, and PKA phosphorylation. Cholangiocytes express MT1 and MT2, CLOCK, BMAL1, CRY1, and PER1 that were all upregulated following BDL. Administration of melatonin to BDL rats decreased IBDM, serum bilirubin and transaminases levels, the expression of all clock genes, cAMP levels, and PKA phosphorylation in cholangiocytes. In vitro, melatonin decreased the proliferation, cAMP levels, and PKA phosphorylation, decreases that were blocked by luzindole. Melatonin may be important in the management of biliary hyperplasia in human cholangiopathies.  相似文献   

11.
The pineal hormone melatonin is involved in physiological transduction of temporal information from the light dark cycle to circadian and seasonal behavioural rhythms, as well as possessing neuroprotective properties. Melatonin and its receptors MT1 and MT2, which belong to the family of G protein-coupled receptors, are impaired in Alzheimer's disease (AD) with severe consequences to neuropathology and clinical symptoms. The present data provides the first immunohistochemical evidence for the cellular localization of the both melatonin receptors in the human pineal gland and occipital cortex, and demonstrates their alterations in AD. We localized MT1 and MT2 in the pineal gland and occipital cortex of 7 elderly controls and 11 AD patients using immunohistochemistry with peroxidase-staining. In the pineal gland both MT1 and MT2 were localized to pinealocytes, whereas in the cortex both receptors were expressed in some pyramidal and non-pyramidal cells. In patients with AD, parallel to degenerative tissue changes, there was an overall decrease in the intensity of receptors in both brain regions. In line with our previous findings, melatonin receptor expression in AD is impaired in two additional brain areas, and may contribute to disease pathology.  相似文献   

12.
The suprachiasmatic nucleus (SCN) plays a major role in photoperiodic regulation of seasonal functions by modulating the melatonin signal. To date no report exists regarding the role of the ambient photoperiod in the regulation of melatonin receptor MT1 and clock gene (PER1 and CRY1) expression in the SCN of any tropical rodent that experiences the least variation in the photoperiod. We noted the expression of MT1, PER1 and CRY1 in the SCN of a tropical squirrel, Funambulus pennanti, along with the plasma level of melatonin over 24 h during the reproductively active (summer) and inactive (winter) phases. The seasonal day length affected the peripheral melatonin, which was inversely related with the MT1 expression in the SCN. The timing for peak expression of PER1 was the same in both phases, while the decline in PER1 expression was delayed by 4 h during the inactive phase. The CRY1 peak advanced by 4 h during the active phase, while the interval between the peak and decline of CRY1 remained the same in both phases. It can be suggested that seasonally changing melatonin levels modulate MT1 expression dynamics in the SCN, altering its functional state, and gate SCN molecular “clock” gene profiles through changes in PER/CRY expression. Such a regulation is important for photo-physiological adaptation (reproduction/immunity) in seasonal breeders.  相似文献   

13.
Spontaneous ovulatory activity (SOA) in spring has been used to study the out-of-season breeding ability of Merinos d'Arles (MA) ewes. Within this breed, an association was found between more intense seasonality and genotype -/- at a MnlI restriction site (allele - for its absence v. + for its presence) in Exon II of the MT1 receptor gene. This study was designed to ascertain whether this association results in a direct effect of the MT1 genotype on the expression of seasonality in MA ewes. In the first year of the study, genotyping of 314 MA ewes at locus MnlI was carried out and resulted in frequencies of 43.0%, 44.9% and 12.1% for genotypes +/+, +/- and -/-, respectively. The SOA of these ewes was determined in early April of two consecutive years by assaying plasma progesterone concentrations in two blood samples taken 9 days apart. Groups of 30 ewes of each homozygous genotype (+/+ and -/-) were identified from this population and their SOA was followed by taking blood samples at regular intervals between January and mid-April of the second and third year of the study. In the second year, groups of ewes were managed together on rangelands, whereas in the third year each group was split into two subgroups given differential feed levels. The results clearly showed that genotype had no significant effect on SOA during the 2- to 3-month period preceding the introduction of rams for spring mating. In the second year of the study, in which the experimental procedure allowed a fair comparison of the fertility of ewes in spring mating, fertility was similar for both genotypes. The reciprocity of the association was not demonstrated and the MnlI polymorphic site could not be used as a genetic marker of selection for out-of-season breeding ability, at least not in the MA breed. The percentage of cycling ewes significantly decreased between January and April, and older ewes (5 or 6 years old depending on the year of the study) were more cyclic than younger ones (2 and 3 years old, respectively). The differential feeding level of ewes from early February did not significantly affect their SOA during the time period studied in the third year of the study.  相似文献   

14.
15.
Previously, it has been shown that chronic melatonin exposure in MT1-CHO cells results in receptor desensitization while at the same time producing drastic morphological changes. The addition of a depolymerizing agent during the melatonin pretreatment period prevents MT1 receptor desensitization and the changes in cellular morphology. The lack of morphological change in the presence of a depolymerizing agent is easily explained by the inability of the microtubules to polymerize, however, the prevention of receptor desensitization is a little more complex and may involve G-protein activation. The goal of this study was to determine whether melatonin-induced MT1 receptor desensitization is regulated by proteins known to regulate G-protein activation states, beta-tubulin and RGS4,using anti sense knockdown approaches. The expression of RGS4 mRNA in CHO cells was confirmed using RT PCR and successful knockdown of each was confirmed by western blot analysis or quantitative PCR. Pretreatment of MT1-CHO cells, transfected with the nonsense probes and exposed to melatonin, resulted in a desensitization of the receptor, an increase in forskolin-induced cAMP accumulation, an increase in 2-[125I]-iodomelatonin binding and no change in the affinity of melatonin for the MT1 receptor. However, knockdown of either beta-tubulin or RGS4 in MT1-CHO cells followed by pretreatment with melatonin attenuated the desensitization of melatonin receptors, decreased total 2-[125I]-iodomelatonin binding, and did not affect neither the forskolin response nor the affinity of melatonin for the MT1 receptor. Perhaps RGS4 and beta-tubulin modulate Galpha-GDP and Galpha-GTP states thus modulating MT1 melatonin receptor function.  相似文献   

16.
17.
18.
Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood. Our aim was to explore the relationship between melatonin's neuroprotective effects and activation of the MT2 melatonin receptor in a murine ischemic-stroke model. Male ICR mice were subjected to a transient middle cerebral ischemic/reperfusional injury, and melatonin (5 and 10 mg/kg, ip) was administrated once daily starting 2 h after ischemia. More than 80% of the mice died within 5 days after stroke without treatment. Melatonin treatment significantly improved the survival rates and neural functioning with modestly prolonged life span of the stroke mice by preserving blood-brain barrier (BBB) integrity via a reduction in the enormous amount of stroke-induced free radical production and significant gp91(phox) cell infiltration. These protective effects of melatonin were reversed by pretreatment with MT2 melatonin receptor antagonists (4-phenyl-2-propionamidotetralin (4P-PDOT) and luzindole). Moreover, treatment with melatonin after stroke dramatically enhanced endogenous neurogenesis (doublecortin positive) and cell proliferation (ki67 positive) in the peri-infarct regions. Most ki67-positive cells were nestin-positive and NG2-positive neural stem/progenitor cells that coexpressed two neurodevelopmental proteins (adam11 and adamts20) and the MT2 melatonin receptor. RT-PCR revealed that the gene expression levels of doublecortin, ki67, adamts20, and adam11 are markedly reduced by stroke, but are restored by melatonin treatment; furthermore, pretreatment with 4P-PDOT and luzindole antagonized melatonin's restorative effect. Our results support the hypothesis that melatonin is able to protect mice against stroke by activating MT2 melatonin receptors, which reduces oxidative/inflammatory stress. This results in the preservation of BBB integrity and enhances endogenous neurogenesis by upregulating neurodevelopmental gene/protein expression.  相似文献   

19.
The rhythmic secretion of melatonin by the pineal gland plays a key role in the synchronisation of circadian and seasonal functions with cyclic environmental variations. The biological effects of this neurohormone are relayed mainly by G-protein-coupled seven-transmembrane receptors. These receptors, known as MT1 and MT2, are present in a large number of central and peripheral structures in mammals, with considerable inter-species variations. However, only the suprachiasmatic nuclei of the hypothalamus, the site of the master circadian biological clock, and the pars tuberalis of the adenohypophysis contain melatonin receptors in the majority of species. Inhibition of the production of AMPc by a Gi/Go protein is one of the principal signalling pathways of the MT1 and MT2 receptors, although many other signal transduction pathways are also brought into play according to the cell type studied (PKC, Ca2+, K+ channels or GMPc in the case of MT2, etc.). Numerous factors or physiological stimuli are capable of influencing the number and functional status of the MT1 and MT2 receptors, such as melatonin, the photoperiod, the circadian clock or the phenomena of receptor dimerisation. Melatonin has numerous physiological effects for which the mechanisms of action and the specific role of the MT1 and MT2 receptors have not yet been clearly elucidated. However, selective pharmacological tools for each of the two receptor subtypes are currently being identified, notably in the Servier Group, for the purpose of furthering our knowledge of the functionality and physiological role of the MT1 and MT2 receptors in the central and peripheral structures.  相似文献   

20.
Melatonin, a pineal hormone that induces sleep, has become a popular over-the-counter drug. The cellular effects of melatonin, however, are only beginning to be studied. We have recently shown that stimulation of the MT1 melatonin receptor induces rapid and dramatic cytoskeletal rearrangements in transformed non-neuronal cells (Witt-Enderby et al., Cell. Motil. Cytoskel. 46 (2000) 28). These cytoskeletal changes result in the formation of structures that closely resemble neurites. In this work, we show that the N1E-115 mouse neuroblastoma cell line rapidly responds to melatonin stimulation and forms neurites within 24 h. We also demonstrate that these cells readily bind 2-[125I]iodomelatonin at levels consistent with what is noted for native tissues (B(max)=3.43+/-1.56 fmol/mg protein; K(d)=240 pM). Western analysis shows that these cells possess and express melatonin receptors of the MT1 subtype. Treatment with pertussis toxin eliminates neurite formation whereas treatment with the MT2 subtype-specific activator, BMNEP, does not induce neurite formation. We have previously shown that increases in MEK 1/2 and ERK 1/2 phosphorylation are correlated with the shape changes in transformed CHO cells. Western analysis of the MEK/ERK signaling pathway in N1E-115 cells shows that this pathway is most likely maximally and constitutively stimulated. This may account for the spontaneous production of neurites noted for this cell line after long culture periods. The results of this work show that melatonin receptor stimulation in a neuronal cell type results in the formation of neurites and that the receptors responsible for melatonin-induced neurite formation in N1E-115 cells are most likely of the MT1 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号