首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptors and innate immunity   总被引:5,自引:0,他引:5  
Toll-like receptors (TLRs) are evolutionarily conserved innate receptors expressed in various immune and non-immune cells of the mammalian host. TLRs play a crucial role in defending against pathogenic microbial infection through the induction of inflammatory cytokines and type I interferons. Furthermore, TLRs also play roles in shaping pathogen-specific humoral and cellular adaptive immune responses. In this review, we describe the recent advances in pathogen recognition by TLRs and TLR signaling.  相似文献   

2.
Toll-like receptors: linking innate and adaptive immunity   总被引:13,自引:0,他引:13  
Detection of and response to microbial infections by the immune system depends largely on a family of pattern-recognition receptors called Toll-like receptors (TLRs). These receptors recognize conserved molecular products derived from various classes of pathogens, including Gram-positive and -negative bacteria, DNA and RNA viruses, fungi and protozoa. Recognition of ligands by TLRs leads to a series of signaling events resulting in induction of acute responses necessary to kill the pathogen. TLRs are also responsible for the induction of dendritic cell maturation, which is responsible and necessary for initiation of adaptive immune responses. Although TLRs control induction of adaptive immunity, it is not clear at this point how responses are appropriately tailored by individual TLRs to the advantage of the host.  相似文献   

3.
Role of toll-like receptors in tissue repair and tumorigenesis   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) play a critical role in host defense from microbial infection. TLRs recognize conserved molecular structures produced by microorganisms and induce activation of innate and adaptive immune responses. The inflammatory responses induced by TLRs play an important role TLRs not only in host defense from infection, but also in tissue repair and regeneration. This latter function of TLRs can also contribute to tumorigenesis. Here we review recent progress in understanding the role of TLRs in cancer development.  相似文献   

4.
Toll-like receptors (TLRs) recognize various microbial components and induce immune responses. Polymorphisms in TLRs may influence their recognition of pathogen-derived molecules; swine TLRs are predicted to be associated with responses to infectious diseases such as pneumonia. In this study, we searched for single nucleotide polymorphisms (SNPs) in the coding sequences of porcine TLR1, TLR2, TLR4, TLR5, and TLR6 genes in 96 pigs from 11 breeds and elucidated 21, 11, 7, 13, and 11 SNPs, respectively, which caused amino acid substitutions in the respective TLRs. Distribution of these nonsynonymous SNPs was biased; many were located in the leucine-rich repeats, particularly in TLR1. These data demonstrated that the heterogeneity of TLR genes was preserved in various porcine breeds despite intensive breeding that was carried out for livestock improvement. It suggests that the heterogeneity in TLR genes is advantageous in increasing the possibility of survival in porcine populations.Electronic SupplementaryMaterial Supplementary material is available for this article at  相似文献   

5.
Toll样受体是机体天然免疫系统最重要的模式识别受体之一,通过识别病原寄生虫的病原相关分子模式,活化依赖和非依赖于髓样分化因子88的信号转导通路,诱导干扰素、炎症因子、趋化因子等的表达以及树突状细胞的成熟,抵御病原寄生虫的感染。因此,以下综述了Toll样受体对原病寄生虫,尤其对动物寄生性原虫与蠕虫感染的模式识别与天然免疫应答机制,以进一步理解病原寄生虫与宿主相互作用的复杂性,为寄生虫病的有效防治提供理论参考。  相似文献   

6.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

7.
Toll-like receptors (TLRs) were evolved to detect invading pathogens and to induce innate immune responses in order to mount host defense mechanisms. It becomes apparent that the activation of certain TLRs is also modulated by endogenous molecules including lipid components, fatty acids. Results from epidemiological and animal studies demonstrated that saturated and polyunsaturated dietary fatty acids can differentially modify the risk of development of many chronic diseases. Inflammation is now recognized as an important underlying etiologic condition for the pathogenesis of many chronic diseases. Therefore, if the activation of TLRs and consequent inflammatory and immune responses are differentially modulated by types of lipids in vivo, this would suggest that the risk of the development of chronic inflammatory diseases and the host defense against microbial infection may be modified by the types of dietary fat consumed.  相似文献   

8.
The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of longterm T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.  相似文献   

9.
NOD样受体在炎症反应中的调控作用   总被引:2,自引:0,他引:2  
席琼  胡巢凤 《生命科学》2010,(5):454-458
天然免疫(innate immunity)是机体免疫系统直接抵御病原体入侵的最初阶段,通过机体自身的特异性模式识别受体(pattern-recognition receptors,PRRs)来识别病原体特有的保守结构病原相关分子模式(pathogen-associated molecular patterns,PAMPs)。细胞内NOD样受体(NLRs)是胞浆型PRRs中的一个重要家族,病原体侵袭细胞可上调其表达,启动机体的免疫应答和炎症反应,在机体天然免疫应答中发挥独特的功能。最近有研究证明,NLRs的突变与一些人类免疫性疾病相关,并且在细菌感染和炎症反应的控制中起重要作用。该文将讨论NLRs在炎症疾病中的调控作用。  相似文献   

10.
How important are Toll‐like receptors for antimicrobial responses?   总被引:6,自引:1,他引:6  
The innate immune system is the primary line of defence against invading pathogenic microbes. Toll-like receptors (TLRs) are a family of membrane receptors which play a pivotal role in sensing a wide range of invading pathogens including bacteria, fungi and viruses. TLR-deficient mice have provided us with immense knowledge on the functioning of individual TLRs. Dysregulation of TLR signalling is linked with a number of disease conditions. Disease models have helped show that targeting components of TLR signalling cascades could lead to novel therapies in the treatment of infectious diseases. In this review we focus on the evidence provided to date to explain just how important TLRs are in host defence against microbial pathogens.  相似文献   

11.
Functions of toll-like receptors: lessons from KO mice   总被引:13,自引:0,他引:13  
The innate immune response is a first-line defense system in which individual Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns (PAMPs) and exert subsequent immune responses against a variety of pathogens. TLRs are composed of an extracellular leucine-rich repeat (LRR) domain and a cytoplasmic domain that is homologous to that of the IL-IR family. Upon stimulation, TLR recruits a cytoplasmic adaptor molecule MyD88, then IL-IR-associated kinase (IRAK), and finally induces activation of NF-kappaB and MAP kinases. However, the responses to TLR ligands differ, indicating the diversity of TLR signaling pathways. Besides MyD88, several novel adaptor molecules have recently been identified. Differential utilization of these adaptor molecules may provide the specificity in the TLR signaling.  相似文献   

12.
Abstract

Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial/vial-derived components that trigger innate immune response, which indicate these molecules play a role in host defense against infection. The infection often precedes numerous disorders including glomerular diseases (glomerulonephritis (GN)). It is reported that TLRs are also involved in the risk and progression of GN, and TLRs may be potential therapeutic targets for GN. To date, a number of studies have found that TLRs are involved in the pathogenesis of GN. There is a paucity of reviews in the literature discussing signaling pathways and gene expression for TLRs in GN. This review was performed to provide a relatively complete signaling pathway flowchart for TLRs to the investigators who were interested in the roles of TLRs in the pathogenesis of GN. In the past decades, some studies were also performed to explore the association of TLRs gene expression with the risk of GN. However, the role of TLRs in the pathogenesis of GN remains controversial. Here, the signal transduction pathways of TLRs and its role of gene expression in the pathogenesis of GN were reviewed.  相似文献   

13.
In Drosophila, the Toll family of proteins is responsible for the recognition of bacteria and fungi. In mammals, Toll-like receptors (TLRs) are able to recognize and respond to microbial pathogens. Recent findings have defined the relationship between many TLRs and their microbial ligands, as well as the effect of TLR ligation on host defense. These findings have also provided a framework for determining how TLRs may by used to therapeutically modulate immune responses to infection.  相似文献   

14.
Toll-like receptors: a family of pattern-recognition receptors in mammals   总被引:2,自引:0,他引:2  
Armant MA  Fenton MJ 《Genome biology》2002,3(8):reviews301-6
The innate immune system uses a variety of germline-encoded pattern-recognition receptors that recognize conserved microbial structures or pathogen-associated molecular patterns, such as those that occur in the bacterial cell-wall components peptidoglycan and lipopolysaccharide. Recent studies have highlighted the importance of Toll-like receptors (TLRs) as a family of pattern-recognition receptors in mammals that can discriminate between chemically diverse classes of microbial products. First identified on the basis of sequence similarity with the Drosophila protein Toll, TLRs are members of an ancient superfamily of proteins, which includes related proteins in invertebrates and plants. TLRs activate innate immune defense reactions, such as the release of inflammatory cytokines, but increasing evidence supports an additional critical role for TLRs in orchestrating the development of adaptive immune responses. The sequence similarity between the intracellular domains of the TLRs and the mammalian interleukin-1 and interleukin-18 cytokine receptors reflects the use of a common intracellular signal-transduction cascade triggered by these receptor classes. But more recent findings have demonstrated that there are in fact TLR-specific signaling pathways and cellular responses. Thus, TLRs function as sentinels of the mammalian immune system that can discriminate between diverse pathogen-associated molecular patterns and then elicit pathogen-specific cellular immune responses.  相似文献   

15.
The nucleotide binding oligomerization domain-like receptor (NLR) family of pattern recognition molecules is involved in a diverse array of processes required for host immune responses against invading pathogens. Unlike TLRs that mediate extracellular recognition of microbes, several NLRs sense pathogens in the cytosol and upon activation induce host defense signaling pathways. Although TLRs and NLRs differ in their mode of pathogen recognition and function, they share similar domains for microbial sensing and cooperate to elicit immune responses against the pathogen. Genetic variation in several NLR genes is associated with the development of inflammatory disorders or increased susceptibility to microbial infection. Further understanding of NLRs should provide critical insight into the mechanisms of host defense and the pathogenesis of inflammatory diseases.  相似文献   

16.
Abstract

As we learn more about the biology of the Toll-like receptors (TLRs), a wide range of molecules that can activate this fascinating family of pattern recognition receptors emerges. In addition to conserved pathogenic components, endogenous danger signals created upon tissue damage are also sensed by TLRs. Detection of these types of stimuli results in TLR mediated inflammation that is vital to fight pathogenic invasion and drive tissue repair. Aberrant activation of TLRs by pathogenic and endogenous ligands has also been linked with the pathogenesis of an increasing number of infectious and autoimmune diseases, respectively. Most recently, allergen activation of TLRs has also been described, creating a third broad class of TLR stimulus that has helped to shed light on the pathogenesis of allergic disease. To date, microbial activation of TLRs remains best characterized. Each member of the TLR family senses a specific subset of pathogenic ligands, pathogen associated molecular patterns (PAMPS), and a wealth of structural and biochemical data continues to reveal the molecular mechanisms of TLR activation by PAMPs, and to demonstrate how receptor specificity is achieved. In contrast, the mechanisms by which endogenous molecules and allergens activate TLRs remain much more mysterious. Here, we provide an overview of our current knowledge of how very diverse stimuli activate the same TLRs and the structural basis of these modes of immunity.  相似文献   

17.
18.
Toll-like receptors (TLRs) play an important role in induction of innate immune responses for host defense against invading microbial pathogens. Microbial component engagement of TLRs can trigger the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent downstream signaling pathways. Parthenolide, an active ingredient of feverfew (Tanacetum parthenium), has been used for centuries to treat many chronic diseases. Parthenolide inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-κB kinase. However, it is not known whether parthenolide inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of parthenolide, its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly [I:C]) was examined. Parthenolide inhibited nuclear factor-κB and interferon regulatory factor 3 activation induced by LPS or poly[I:C], and the LPS-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that parthenolide can modulate TRIF-dependent signaling pathways of TLRs, and may be the basis of effective therapeutics for chronic inflammatory diseases.  相似文献   

19.
How Location Governs Toll-Like Receptor Signaling   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of innate immune system receptors responsible for recognizing conserved pathogen-associated molecular patterns (PAMPs). PAMP binding to TLRs initiates intracellular signaling pathways that lead to the upregulation of a variety of costimulatory molecules and the synthesis and secretion of various cytokines and interferons by cells of the innate immune system. TLR-induced innate immune responses are a prerequisite for the generation of most adaptive immune responses, and in the case of B cells, TLRs directly regulate signaling from the antigen-specific B-cell receptor. The outcome of TLR signaling is determined, in part, by the cells in which they are expressed and by the selective use of signaling adaptors. Recent studies suggest that, in addition, both the ligand recognition by TLRs and the functional outcome of ligand binding are governed by the subcellular location of the TLRs and their signaling adaptors. In this review we describe what is known about the intracellular trafficking and compartmentalization of TLRs in innate system's dendritic cells and macrophages and in adaptive system's B cells, highlighting how location regulates TLR function.  相似文献   

20.
Influenza is a ssRNA virus that has been responsible for widespread morbidity and mortality; however, the innate immunological mechanisms that drive the adaptive anti-influenza immune response in vivo are yet to be fully elucidated. TLRs are pattern recognition receptors that bind evolutionarily conserved pathogen-associated molecular patterns, induce dendritic cell maturation, and consequently aid the development of effective immune responses. We have examined the role of TLRs in driving effective T and B cell responses against influenza virus. We found TLR3 and its associated adapter molecule, Toll/IL-R domain-containing adaptor-inducing IFN-beta, did not play a role in the development of CD4(+) or CD8(+) T cell responses against influenza virus, nor did they influence influenza-specific B cell responses. Surprisingly, TLR7 and MyD88 also played negligible roles in T cell activation and effector function upon infection with influenza virus; however, their signaling was critical for regulating anti-influenza B cell Ab isotype switching. The induction of appropriate anti-influenza humoral responses involved stimulation of TLRs on B cells directly and TLR-induced production of IFN-alpha, which acted to reduce IgG1 and increase IgG2a/c class switching. Notably, direct TLR signaling on B cells or T cell help through the CD40-CD40L interaction was sufficient to support B cell proliferation and IgG1 production, whereas IFN-alpha was critical for fine-tuning the nature of the isotype switch. Taken together, these data reveal that TLR signaling is not required for anti-influenza T cell responses, but through both direct and indirect means orchestrates appropriate anti-influenza B cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号