首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ryanodine receptors (RyRs) amplify intracellular Ca(2+) signals by massively releasing Ca(2+) from intracellular stores. Exaggerated chronic Ca(2+) release can trigger cellular apoptosis underlying a variety of neurodegenerative diseases. Aberrant functioning of presenilin-1 (PS1) protein instigates Ca(2+)-dependent apoptosis, providing a basis for the "calcium hypothesis" of Alzheimer's disease (AD). To get insight into this problem, we hypothesized that the previously reported physical interaction between RyR and PS1 modulates functional properties of the RyR. We generated a soluble cytoplasmic N-terminal fragment of PS1 comprising the first 82 amino acid (PS1 NTF(1-82)), the candidate for interaction with putative cytoplasmic modulatory sites of the RyR, and studied its effect on single channel currents of mouse brain RyRs incorporated in lipid bilayers. PS1 NTF(1-82) strongly increased both mean currents (EC(50)=12nM, Hill coefficient (n(H)) approximately 1) and open probability for higher sublevels for single RyR channels (EC(50)=7nM, n(H) approximately 2). Bell-shaped Ca(2+)-activation curve remained unchanged, suggesting that PS1 NTF(1-82) allosterically potentiates RyRs, but that the channel still requires Ca(2+) for activation. Corroborating such an independent mechanism, the RyR potentiation by PS1 NTF(1-82) was overridden by receptor desensitization at high [Ca(2+)] (pCa>5). This potentiation of RyR by PS1 NTF(1-82) reveals a new mechanism of physiologically relevant PS1-regulated Ca(2+) release from intracellular stores, which could be alternative or additional to recently reported intracellular Ca(2+) leak channels formed by PS1 holoproteins.  相似文献   

2.
The glutamate at site 224 of a Kir2.1 channel plays an important role in K+ permeation. The single-channel inward current flickers with reduced conductance in an E224G mutant. We show that open-channel fluctuations can also be observed in E224C, E224K, and E224Q mutants. Yet, open-channel fluctuations were not observed in either the wild-type or an E224D mutant. Introducing a negatively charged methanethiosulfonate reagent to the E224C mutant irreversibly increased channel conductance and eliminated open-channel fluctuations. These results suggest that although the negatively charged residue 224 is located at the internal vestibule, it is important for smooth inward K+ conduction. We identified a substate in the E224G mutant and showed that open-channel fluctuations are mainly attributed to rapid transitions between the substate and the main state. Also, we characterized the voltage- and ion-dependence of the substate kinetics. The open-channel fluctuations decreased in internal NH4+ or Tl+ as compared to internal K+. These results suggest that NH4+ and Tl+ gate the E224G mutant in a more stable state. Based on an ion-conduction model, we propose that the appearance of the substate in the E224G mutant is due to changes of ion gating in association with variations of ion-ion interaction in the permeation pathway.  相似文献   

3.
In this study, we have investigated block of potassium (K(+)) current by neomycin, a large polycation, from the luminal face of the type 3 ryanodine receptor (RyR3). Previous studies have shown that neomycin is an open channel blocker of RyR2 that interacts with negatively charged residues in the mouth of the conduction pathway to partially occlude it. In the current study, we have used neomycin as a probe to investigate proposed negatively charged regions in the luminal pore mouth of RyR3. Luminal neomycin induces concentration- and voltage-dependent partial block to a subconductance state in RyR3. Blocking parameters calculated in this study show that neomycin has a higher affinity for RyR3 than RyR2, but block may occur at the same site within the pore mouth. The change in affinity may be due to altered negative charge density at the site of interaction.  相似文献   

4.
Meissner G 《Cell calcium》2004,35(6):621-628
The release of Ca(2+) ions from intracellular stores is a key step in a wide variety of cellular functions. In striated muscle, the release of Ca(2+) from the sarcoplasmic reticulum (SR) leads to muscle contraction. Ca(2+) release occurs through large, high-conductance Ca(2+) release channels, also known as ryanodine receptors (RyRs) because they bind the plant alkaloid ryanodine with high affinity and specificity. The RyRs are isolated as 30S protein complexes comprised of four 560 kDa RyR2 subunits and four 12 kDa FK506 binding protein (FKBP12) subunits. Multiple endogenous effector molecules and posttranslational modifications regulate the RyRs. This review focuses on current research toward understanding the control of the isolated cardiac Ca(2+) release channel/ryanodine receptor (RyR2) by Ca(2+), calmodulin, thiol oxidation/reduction and nitrosylation, and protein phosphorylation.  相似文献   

5.
The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca2+ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca2+ uptake completion prevented this response. Maurocalcine enhanced equilibrium [3H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg2+ inhibition of [3H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca2+] from 10 μM to 0.1 μM or at cytoplasmic [Mg2+]  30 μM. At 0.1 μM [Ca2+], only channels that displayed poor activation by Ca2+ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.  相似文献   

6.
The glucagon-like peptide-1 receptor (GLP-1R) is a target for type 2 diabetes treatment. Due to the inconvenience of peptide therapeutics, small-molecule GLP-1R agonists have been studied. Compound 2 (6,7-dichloro-2-methylsulfonyl-2-N-tert-butylaminoquinoxaline) and compound B (4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine) have been described as small molecule, ago-allosteric modulators of GLP-1R. However, their modes of action at the GLP-1R have not been elucidated. Thus, in this study, we compared the mechanisms of action between these two compounds. When compound 2 was treated with endogenous or exogenous peptide agonists (GLP-1 and exenatide) or fragments of peptide agonists (GLP-1(9-36), Ex3, Ex4, and Ex5), the response curve of these peptide agonists shifted left without a change in maximum efficacy. In contrast, compound B potentiated the response and increased maximum efficacy. However, N-terminal truncated orthosteric antagonists including Ex7, Ex9, and Ex10, augmented the response of compound 2 at the GLP-1R but did not alter compound B activity. Intriguingly, when we co-treated compound 2 with compound B in CHO cells expressing full-length hGLP-1R or N-terminal extracellular domain-truncated GLP-1R, the activation of both types of receptors increased additively, implying that the N-terminus of the receptor is not involved in the modulation by compound agonists. We confirmed that these two compounds increased calcium influx by different patterns in CHO cells expressing GLP-1R. Taken together, our findings suggest that compounds 2 and B have different modes of action to activate GLP-1R. Further study to identify the putative binding sites will help in the discovery of orally available GLP-1R agonists.  相似文献   

7.
W Tsai  A D Morielli    E G Peralta 《The EMBO journal》1997,16(15):4597-4605
Intracellular tyrosine kinases link the G protein-coupled m1 muscarinic acetylcholine receptor (mAChR) to multiple cellular responses. However, the mechanisms by which m1 mAChRs stimulate tyrosine kinase activity and the identity of the kinases within particular signaling pathways remain largely unknown. We show that the epidermal growth factor receptor (EGFR), a single transmembrane receptor tyrosine kinase, becomes catalytically active and dimerized through an m1 mAChR-regulated pathway that requires protein kinase C, but is independent of EGF. Finally, we demonstrate that transactivation of the EGFR plays a major role in a pathway linking m1 mAChRs to modulation of the Kv1.2 potassium channel. These results demonstrate a ligand-independent mechanism of EGFR transactivation by m1 mAChRs and reveal a novel role for these growth factor receptors in the regulation of ion channels by G protein-coupled receptors.  相似文献   

8.
To map the structure of a ligand-gated ion channel, we used the photolabile polyamine-containing toxin MR44 as photoaffinity label. MR44 binds with high affinity to the nicotinic acetylcholine receptor in its closed channel conformation. The binding stoichiometry was two molecules of MR44 per receptor monomer. Upon UV irradiation of the receptor-ligand complex, (125)I-MR44 was incorporated into the receptor alpha-subunit. From proteolytic mapping studies, we conclude that the site of (125)I-MR44 cross-linking is contained in the sequence alpha His-186 to alpha Leu-199, which is part of the extracellular domain of the receptor. This sequence partially overlaps in its C-terminal region with one of the three loops that form the agonist-binding site. The agonist carbachol and the competitive antagonist alpha-bungarotoxin had only minor influence on the photocross-linking of (125)I-MR44. The site where the hydrophobic head group of (125)I-MR44 binds must therefore be located outside the zone that is sterically influenced by agonist bound at the nicotinic acetylcholine receptor. In binding and photocross-linking experiments, the luminal noncompetitive inhibitors ethidium and triphenylmethylphosphonium were found to compete with (125)I-MR44. We conclude that the polyamine moiety of (125)I-MR44 interacts with the high affinity noncompetitive inhibitor site deep in the channel of the nicotinic acetylcholine receptor, while the aromatic ring of this compound binds in the upper part of the ion channel (i.e. in the vestibule) to a hydrophobic region on the alpha-subunit that is located in close proximity to the agonist binding site. The region of the alpha-subunit labeled by (125)I-MR44 should therefore be accessible from the luminal side of the vestibule.  相似文献   

9.
10.
Yamaguchi N  Xu L  Pasek DA  Evans KE  Chen SR  Meissner G 《Biochemistry》2005,44(45):15074-15081
Ryanodine receptors (RyRs) are a family of intracellular Ca(2+) channels that are regulated by calmodulin (CaM). At low Ca(2+) concentrations (<1 microM), CaM activates RyR1 and RyR3 and inhibits RyR2. At elevated Ca(2+) concentrations (>1 microM), CaM inhibits all three RyR isoforms. Here we report that the regulation of recombinant RyR3 by CaM is sensitive to redox regulation. RyR3 in the presence of reduced glutathione binds CaM with 10-15-fold higher affinity, at low and high Ca(2+) concentrations, compared to in the presence of oxidized glutathione. However, compared to RyR1 assayed at low Ca(2+) concentrations under both reducing and oxidizing conditions, CaM binds RyR3 with reduced affinity but activates RyR3 to a greater extent. Under reducing conditions, RyR1 and RyR3 activities are inhibited with a similar affinity at [Ca(2+)] > 1 microM. Mutagenesis studies demonstrate that RyR3 contains a single conserved CaM binding site. Corresponding amino acid substitutions in the CaM binding site differentially affect CaM binding and CaM regulation of RyR3 and those of the two other isoforms. The results support the suggestion that other isoform dependent regions have a major role in the regulation of RyRs by CaM [Yamaguchi et al. (2004) J. Biol. Chem. 279, 36433-36439].  相似文献   

11.
A large amount of data and observations on inositol 1,4,5-trisphosphate (IP(3)) binding to the IP(3) receptor/Ca(2+) channel, the steady-state activity of the channel, and its inactivation by IP(3) can be explained by assuming one activation and one inhibition module, both allosterically operated by Ca(2+), IP(3), and ATP, and one adaptation element, driven by IP(3), Ca(2+), and the interconversion between two possible conformations of the receptor. The adaptation module becomes completely insensitive to a second IP(3) pulse within 80 s. Observed kinetic responses are well reproduced if, in addition, two module open states are rendered inactive by the current charge carrier Mn(2+). The inactivation time constants are 59 s in the activation, and 0.75 s in the adaptation module. The in vivo open probability of the channel is predicted to be almost in coincidence with the behavior in lipid bilayers for IP(3) levels of 0.2 and 2 microM and one-order-higher at 0.02 microM IP(3), whereas at 180 microM IP(3) the maximal in vivo activity may be 2.5-orders higher than in bilayers and restricted to a narrower Ca(2+) domain (approximately 10 microM-wide versus approximately 100 microM-wide). IP(3) is likely to inhibit channel activity at < or =120 nM Ca(2+) in vivo.  相似文献   

12.
The determinants of single channel conductance (γ) and ion selectivity within eukaryotic pentameric ligand-gated ion channels have traditionally been ascribed to amino acid residues within the second transmembrane domain and flanking sequences of their component subunits. However, recent evidence suggests that γ is additionally controlled by residues within the intracellular and extracellular domains. We examined the influence of two anionic residues (Asp(113) and Asp(127)) within the extracellular vestibule of a high conductance human mutant 5-hydroxytryptamine type-3A (5-HT(3)A) receptor (5-HT(3)A(QDA)) upon γ, modulation of the latter by extracellular Ca(2+), and the permeability of Ca(2+) with respect to Cs(+) (P(Ca)/P(Cs)). Mutations neutralizing (Asp → Asn), or reversing (Asp → Lys), charge at the 113 locus decreased inward γ by 46 and 58%, respectively, but outward currents were unaffected. The D127N mutation decreased inward γ by 82% and also suppressed outward currents, whereas the D127K mutation caused loss of observable single channel currents. The forgoing mutations, except for D127K, which could not be evaluated, ameliorated suppression of inwardly directed single channel currents by extracellular Ca(2+). The P(Ca)/P(Cs) of 3.8 previously reported for the 5-HT(3)A(QDA) construct was reduced to 0.13 and 0.06 by the D127N and D127K mutations, respectively, with lesser, but clearly significant, effects caused by the D113N (1.04) and D113K (0.60) substitutions. Charge selectivity between monovalent cations and anions (P(Na)/P(Cl)) was unaffected by any of the mutations examined. The data identify two key residues in the extracellular vestibule of the 5-HT(3)A receptor that markedly influence γ, P(Ca)/P(Cs), and additionally the suppression of γ by Ca(2+).  相似文献   

13.
The mRNA level of the type-1 angiotensin II receptor (AT1) was down-regulated by angiotensin II in cultured rat glomerular mesangial cells. The effect was maximum with 1 microM AII at 6 h, sensitive to cycloheximide, and specific to AT1 since this phenomenon was blocked by DuP753, an AT1 antagonist, but not by type-2 antagonist PD123319. Dibutyryl cAMP, forskolin, and cholera toxin also caused AT1 down-regulation. These effects were not altered by either the protein kinase A inhibitor H-8 or cycloheximide. Calcium ionophore A23187, pertussis toxin, protein kinase C inhibitor staurosporine, or prolonged incubation with phorbol ester were without effect. These results suggest that there are at least two pathways to down-regulate AT1 mRNA; one way is an angiotensin II-induced, protein kinase C-independent, and cycloheximide-sensitive pathway and the other is an angiotensin II-independent, cAMP-induced, and cycloheximide-insensitive pathway.  相似文献   

14.
Mihelic M  Turk D 《Biological chemistry》2007,388(11):1123-1130
Thyroglobulin type-1 repeats are primarily found in thyroglobulin and several other functionally unrelated proteins. Because a few of them exhibit inhibitory activity against cysteine proteases they were named thyropins (thyroglobulin type-1 domain protease inhibitors). In contrast to cystatins, the best-characterized group of papain-like protease inhibitors, they exhibit greater selectivity in their interactions with target proteases. Interestingly, a few members inhibit aspartic protease cathepsin D and metalloproteases. In contrast to the inhibitory fragment of the major histocompatibility complex class II-associated p41 form of invariant chain, whose structural integrity appears mandatory for its inhibitory properties, short polypeptides derived from insulin-like growth factor-binding proteins exhibit the same activity as the structure of the whole fragment. Taken together, the results indicate that the thyroglobulin type-1 repeat is a structural motif occasionally employed as an inhibitor of proteases.  相似文献   

15.
The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.  相似文献   

16.
Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.  相似文献   

17.
Sequence comparison suggests that the ryanodine receptors (RyRs) have pore architecture similar to that of the bacterial K+ channel KcsA. The lumenal loop linking the two most C-terminal transmembrane spanning segments in the RyRs has a predicted pore helix and an amino acid motif (GGGIG) similar to the selectivity filter (TVGYG) of KcsA identified by x-ray analysis. The RyRs have many negatively charged amino acid residues in the two regions linking the GGGIG motif and predicted pore helix with the two most C-terminal transmembrane spanning segments. We tested the role of these residues by generating single-site mutants, focusing on amino acid residues conserved among the mammalian RyRs. Replacement of two acidic residues immediately after the GGGIG motif in skeletal muscle ryanodine receptor (RyR1-D4899 and -E4900) with asparagine and glutamine profoundly affected ion permeation and selectivity. By comparison, mutagenesis of aspartate and glutamate residues in the putative linker regions showed a K+ conductance and selectivity for Ca2+ compared to K+ (P(Ca)/P(K)) close to wild-type. The results show that the negatively charged carboxyl oxygens of D4899 and E4900 side chains are major determinants of RyR ion conductance and selectivity.  相似文献   

18.
Ionic mechanisms of salt stress perception were investigated by non‐invasive measurements of net H+, K+, Ca2+, Na+, and Cl? fluxes from leaf mesophyll of broad bean (Vicia faba L.) plants using vibrating ion‐selective microelectrodes (the MIFE technique). Treatment with 90 m M NaCl led to a significant increase in the net K+ efflux and enhanced activity of the plasma membrane H+‐pump. Both these events were effectively prevented by high (10 m M ) Ca2+ concentrations in the bath. At the same time, no significant difference in the net Na+ flux has been found between low‐ and high‐calcium treatments. It is likely that plasma membrane K+ and H+ transporters, but not the VIC channels, play the key role in the amelioration of negative salt effects by Ca2+ in the bean mesophyll. Experiments with isotonic mannitol application showed that cell ionic responses to hyperosmotic treatment are highly stress‐specific. The most striking difference in response was shown by K+ fluxes, which varied from an increased net K+ efflux (NaCl treatment) to a net K+ influx (mannitol treatment). It is concluded that different ionic mechanisms are involved in the perception of the ‘ionic’ and ‘osmotic’ components of salt stress.  相似文献   

19.
Vanilloid receptor 1 (VR1), a ligand-gated ion channel activated by vanilloids, acid, and heat, is a molecular detector that integrates multiple modes of pain. Although the function and the biophysical properties of the channel are now known, the regions of VR1 that recognize ligands are largely unknown. By the stepwise deletion of VR1 and by chimera construction using its capsaicin-insensitive homologue, VRL1, we localized key amino acids, Arg-114 and Glu-761, in the N- and C-cytosolic tails, respectively, that determine ligand binding. Point mutations of the two key residues resulted in a loss of sensitivity to capsaicin and a concomitant loss of specific binding to [(3)H]resiniferatoxin, a potent vanilloid. Furthermore, changes in the charges of the two amino acids blocked capsaicin-sensitive currents and ligand binding without affecting current responses to heat. Thus, these two regions in the cytoplasmic tails of VR1 provide structural elements for its hydrophilic interaction with vanilloids and might constitute a long-suspected binding pocket.  相似文献   

20.
Alterations in ryanodine binding and local cerebral blood flow (LCBF) were examined at 30 minutes and 2 hours post-ischemia in the gerbil brain in order to evaluate the influence of cerebral ischemia on the intracellular channels of Ca2+-induced Ca2+ release (CICR). Severe hemispheric cerebral ischemia was induced by occluding the right common carotid artery. LCBF was measured at the end of the experiment using [14C]iodoantipyrine method, and the ryanodine binding was evaluated in vitro using [3H]ryanodine as a specific ligand for CICR channels. An autoradiographic method developed in our laboratory enabled us to determine both parameters within the same brain. A group of gerbils who underwent a sham procedure served as controls. LCBF was found to be significantly reduced in most of the cerebral regions on the occluded side at both 30 minutes as well as 2 hours post-ischemia. In contrast, a significant reduction in ryanodine binding was noted only in the hippocampus CA1 on the occluded side at 30 minutes and 2 hours after the occlusion. These findings suggest that regionally specific changes of CICR may be the cause of decreased ryanodine binding in the hippocampus CA1, and that these changes may be related to the pathophysiological mechanisms that cause this region to be particularly vulnerable to ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号