首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of staphylococcal accessory regulator (sarA) results in increased production of extracellular proteases in Staphylococcus aureus, which has been correlated with decreased biofilm formation and decreased accumulation of extracellular toxins. We used murine models of implant‐associated biofilm infection and S. aureus bacteraemia (SAB) to compare virulence of USA300 strain LAC, its isogenic sarA mutant, and derivatives of each of these strains with mutations in all 10 of the genes encoding recognized extracellular proteases. The sarA mutant was attenuated in both models, and this was reversed by eliminating production of extracellular proteases. To examine the mechanistic basis, we identified proteins impacted by sarA in a protease‐dependent manner. We identified 253 proteins where accumulation was reduced in the sarA mutant compared with the parent strain, and was restored in the sarA/protease mutant. Additionally, in SAB, the LAC protease mutant exhibited a hypervirulent phenotype by comparison with the isogenic parent strain, demonstrating that sarA also positively regulates production of virulence factors, some of which are subject to protease‐mediated degradation. We propose a model in which attenuation of sarA mutants is defined by their inability to produce critical factors and simultaneously repress production of extracellular proteases that would otherwise limit accumulation of virulence factors.  相似文献   

2.
The maturation of the peptide antibiotic (lantibiotic) subtilin in Bacillus subtilis ATCC 6633 includes posttranslational modifications of the propeptide and proteolytic cleavage of the leader peptide. To identify subtilin processing activities, we used antimicrobial inactive subtilin precursors consisting of the leader peptide which was still attached to the fully matured propeptide. Two extracellular B. subtilis proteases were able to activate subtilin precursors, the commercially available serine protease prototype subtilisin (AprE) and WprA. The latter was isolated from B. subtilis WB600, a strain deficient in six extracellular proteases. Surprisingly, the aprE wprA double mutant of the ATCC 6633 strain was still able to produce active subtilin, however, with a reduced production rate. No subtilin processing was found within the culture supernatant of the WB800 strain, which is deficient in eight extracellular proteases. Vpr was identified as the third protease capable to process subtilin.  相似文献   

3.
Bacillus subtilis is a prolific producer of enzymes and biopharmaceuticals. However, the susceptibility of heterologous proteins to degradation by (extracellular) proteases is a major limitation for use of B. subtilis as a protein cell factory. An increase in protein production levels has previously been achieved by using either protease-deficient strains or addition of protease inhibitors to B. subtilis cultures. Notably, the effects of genetic and chemical inhibition of proteases have thus far not been compared in a systematic way. In the present studies, we therefore compared the exoproteomes of cells in which extracellular proteases were genetically or chemically inactivated. The results show substantial differences in the relative abundance of various extracellular proteins. Furthermore, a comparison of the effects of genetic and/or chemical protease inhibition on the stress response triggered by (over) production of secreted proteins showed that chemical protease inhibition provoked a genuine secretion stress response. From a physiological point of view, this suggests that the deletion of protease genes is a better way to prevent product degradation than the use of protease inhibitors. Importantly however, studies with human interleukin-3 show that chemical protease inhibition can result in improved production of protease-sensitive secreted proteins even in mutant strains lacking eight extracellular proteases.  相似文献   

4.
Even though cell wall proteins of Bacillus subtilis are characterized by specific cell wall retention signals, some of these are also components of the extracellular proteome. In contrast to the majority of extracellular proteins, wall binding proteins disappeared from the extracellular proteome during the stationary phase and are subjected to proteolysis. Thus, the extracellular proteome of the multiple protease-deficient strain WB700 was analyzed which showed an increased stability of secreted WapA processing products during the stationary phase. In addition, stabilization of the WapA processing products was observed also in a sigD mutant strain which is impaired in motility and cell wall turnover. Next, we analyzed if proteins that can be extracted from B. subtilis cell walls are stabilized in the WB700 strain as well as in the sigD mutant. Thus, the cell wall proteome of B. subtilis wild type was defined showing most abundantly cell wall binding proteins (CWBPs) resulting from the WapA and WprA precursor processing. The inactivation of extracellular proteases as well as SigmaD caused an increase of CWBP105 and a decrease of CWBP62 in the cell wall proteome. We conclude that WapA processing products are substrates for the extracellular proteases which are stabilized in the absence of sigD due to an impaired cell wall turnover.  相似文献   

5.
6.
7.
Although one of the major factors limiting the application of Bacillus subtilis as an expression host has been its production of at least eight extracellular proteases, researchers have also noticed that some proteases benefited the secretion of foreign proteins at times. Therefore, to maximize the yield of a foreign protein, the proteases should be selectively inactivated. This raises a new question that how to identify the favorable and unfavorable proteases for a target protein. Here, an evaluation system containing nine mutant strains of B. subtilis 168 was developed to address this question. The mutant strain PD8 has all the eight proteases inactivated whereas each of the other eight mutant strains expresses only one kind of these eight proteases. The target protein is secreted in these nine mutant strains; if the production of target protein in a mutant strain is higher than that in strain PD8, the corresponding protease is regarded as favorable. Accordingly, the optimal protease-deficient host is constructed through inactivating the unfavorable proteases. The effectiveness of this system was confirmed by expressing three foreign proteins. This study provides a strategy for improving the secretion of a foreign protein in B. subtilis through tailoring a personalized protease-deficient host.  相似文献   

8.
Candida albicans secretes aspartyl proteases (Saps) during infection. Although Saps are secretory proteins, little is known about the intracellular trafficking and secretion of these proteins. We previously cloned and analyzed the C. albicans pre-vacuolar protein sorting gene VPS4, and demonstrated that extracellular Sap2p is absent in the culture supernatants of the vps4delta null mutant. We therefore investigated the role of the C. albicans pre-vacuolar secretion pathway in the trafficking of Sap4-6p and in vivo virulence. The C. albicans vps4delta mutant failed to produce extracellular Sap4-6p. Next, when tested in a mouse model of disseminated candidiasis, the vps4delta mutant was greatly attenuated in virulence. Histopathological analysis indicated that infection with the vps4delta mutant did not cause renal microabscess formation, in contrast to the wild-type strain. Our results imply that VPS4 is required for extracellular secretion of Sap4-6p, and that C. albicans requires an intact pre-vacuolar secretory pathway for wild-type virulence in vivo.  相似文献   

9.
10.
Two Escherichia coli lactose carrier mutants (tyrosine or phenylalanine substituted for histidine 322) were studied under conditions of net efflux or equilibrium exchange. Net lactose efflux by either mutant was 10-20-fold slower than by the parent and was sensitive to extracellular pH (5.6-8.0). The presence of extracellular lactose (equilibrium exchange) failed to accelerate loss of [14C]lactose, indicating that the step(s) rate limiting for exchange were also rate limiting for net lactose efflux. Net melibiose efflux by the Phe-322 mutant was comparable to the normal carrier, while that by the Tyr-322 mutant was 5-fold faster (pH 7.0). Melibiose efflux by either mutant was sensitive to pH (5.6-8.0). Melibiose in the extracellular medium significantly accelerated loss of [3H]melibiose from either mutant, showing that slow exchange is a sugar-specific phenomenon and not an intrinsic property of these mutants. The sugar-specific effect of these mutations could mean that the defect in these mutants is not on the path of the proton, although alternative explanations cannot as yet be eliminated. The modest effect of these mutations on the transport rate indicates that His-322 contributes a far smaller free energy increment to catalyzing of H+/galactoside cotransport than active site histidines contribute to catalyzing peptide bond hydrolysis in serine proteases. We interpret this to mean that in chemical terms the function of these catalytic histidine residues differ considerably.  相似文献   

11.
The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and required for the production of an extracellular signaling molecule that regulates cellular functions including peptidoglycan acetylation, methionine transport, and cysteine biosynthesis. Additional aarA-dependent phenotypes include (i) loss of an extracellular yellow pigment, (ii) inability to grow on MacConkey agar, and (iii) abnormal cell division. Since these phenotypes are easily assayed, the P. stuartii aarA mutant serves as a useful host system to investigate rhomboid function. The Escherichia coli GlpG protein was shown to be functionally similar to AarA and rescued the above aarA-dependent phenotypes in P. stuartii. GlpG proteins containing single alanine substitutions at the highly conserved catalytic triad of asparagine (N154A), serine (S201A), or histidine (H254A) residues were nonfunctional. The P. stuartii aarA mutant was also used as a biosensor to demonstrate that proteins from a variety of diverse sources exhibited rhomboid activity. In an effort to further investigate the role of a rhomboid protein in cell physiology, a glpG mutant of E. coli was constructed. In phenotype microarray experiments, the glpG mutant exhibited a slight increase in resistance to the beta-lactam antibiotic cefotaxime.  相似文献   

12.
Two proteases (PRT1 and PRT2) were fractionated from culture supernatants of wild-type Xanthomonas campestris pv. campestris by cation-exchange chromatography on SP-5PW. Inhibitor experiments showed that PRT 1 was a serine protease which required calcium ions for activity or stability or both and that PRT 2 was a zinc-requiring metalloprotease. PRT 1 and PRT 2 showed different patterns of degradation of beta-casein. The two proteases comprised almost all of the extracellular proteolytic activity of the wild type. A protease-deficient mutant which lacked both PRT 1 and PRT 2 showed considerable loss of virulence in pathogenicity tests when bacteria were introduced into mature turnip leaves through cut vein endings. This suggests that PRT 1 and PRT 2 have a role in black rot pathogenesis.  相似文献   

13.
Two proteases (PRT1 and PRT2) were fractionated from culture supernatants of wild-type Xanthomonas campestris pv. campestris by cation-exchange chromatography on SP-5PW. Inhibitor experiments showed that PRT 1 was a serine protease which required calcium ions for activity or stability or both and that PRT 2 was a zinc-requiring metalloprotease. PRT 1 and PRT 2 showed different patterns of degradation of beta-casein. The two proteases comprised almost all of the extracellular proteolytic activity of the wild type. A protease-deficient mutant which lacked both PRT 1 and PRT 2 showed considerable loss of virulence in pathogenicity tests when bacteria were introduced into mature turnip leaves through cut vein endings. This suggests that PRT 1 and PRT 2 have a role in black rot pathogenesis.  相似文献   

14.
15.
A proteolytic mutant from Clostridium botulinum type E produced extracellular proteases after the end of exponential growth coinciding with the period of sporulation. Proteases were separated into four fractions by chromatography on a DEAE-cellulose column. One was a sulphydryl-dependent protease that also apparently required a divalent cation for enzyme activity since it was inhibited by EDTA. This enzyme hydrolysed synthetic amide and ester compounds containing an arginine residue, and showed some activity towards L-lysine methyl ester. It appeared that two of the other proteases were serine proteases and the fourth was a metal protease. These last three proteases did not require a thiol agent and did not hydrolyse any of the synthetic amides or esters examined. Only the sulphydryl-dependent protease could activate C. botulinum type B, E and F toxins. The ability of this enzyme to activate type B and E toxins was markedly lower than that of trypsin. The susceptibility of type B toxin to this protease was lower than that of type E toxin. C2 toxin was not activated by this enzyme. It is suggested that the sulphydryl-dependent protease in this proteolytic mutant of C. botulinum type E has properties similar to those of proteases from C. botulinum types B and F.  相似文献   

16.
Summary Bacillus subtilis DB104, a double mutant which does not synthesize neutral or alkaline proteases, was shown to exhibit some residual proteolytic activity when grown in both batch and continuous cultures. A major protein component responsible for about 70% of extracellular residual protease activity was reversibly deactivated by removal of calcium.  相似文献   

17.
The modified rotating simplex method has been successfully used to determine the best combination of agitation rate and aeration rate for maximum production of extracellular proteases by Staphylococcus aureus mutant RC128, in a stirred tank bioreactor operated in a discontinuous way. This mutant has shown altered exoprotein production, specially enhanced protease production. Maximum production of proteases (15.28 UP/ml), measured using azocasein as a substrate, was obtained at exponential growth phase when the bioreactor was operated at 300 rpm and at 2 vvm with a volumetric oxygen transfer coefficient (K L a) of 175.75 h−1. These conditions were found to be more suitable for protease production.  相似文献   

18.
Adav SS  Chao LT  Sze SK 《Molecular & cellular proteomics : MCP》2012,11(7):M111.012419-M111.012419-15
Trichoderma reesei is a mesophilic, filamentous fungus, and it is a major industrial source of cellulases, but its lignocellulolytic protein expressions on lignocellulosic biomass are poorly explored at present. The extracellular proteins secreted by T. reesei QM6a wild-type and hypercellulolytic mutant Rut C30 grown on natural lignocellulosic biomasses were explored using a quantitative proteomic approach with 8-plex high throughput isobaric tags for relative and absolute quantification (iTRAQ) and analyzed by liquid chromatography tandem mass spectrometry. We quantified 230 extracellular proteins, including cellulases, hemicellulases, lignin-degrading enzymes, proteases, protein-translocating transporter, and hypothetical proteins. Quantitative iTRAQ results suggested that the expressions and regulations of these lignocellulolytic proteins in the secretome of T. reesei wild-type and mutant Rut C30 were dependent on both nature and complexity of different lignocellulosic carbon sources. Therefore, we discuss here the essential lignocellulolytic proteins for designing an enzyme mixture for optimal lignocellulosic biomass hydrolysis.  相似文献   

19.
Proteases have been proposed as virulence factors in microbial pathogenicity against nematodes. However, what kinds of extracellular proteases from these pathogens and how they contribute to the pathogenesis of infections against nematode in vivo remain largely unknown. A previous analysis using a strain with a deletion in an extracellular alkaline protease BLG4 gene from Brevibacillus laterosporus demonstrated that BLG4 was responsible for the majority of nematicidal activity by destroying host’s cuticle. In recent studies, a neutral protease NPE-4, purified from the mutant BLG4–6, was found to be responsible for the majority of the remaining EDTA-inhibited protease activity. However, the purified NPE-4 and recombinant NPE-4 in a related species Bacillus subtilis showed little nematicidal activity in vitro and were unable to degrade the intact cuticle of the host. It is interesting to note that the addition of NPE-4 improved the pathogenicity of crude enzyme extract from wild-type B. laterosporus but had no effect on the BLG4-deficient mutant. This result suggests that NPE-4 functions in the presence of protease BLG4. Moreover, NPE-4 could degrade proteins from the inner layer of purified cuticles from nematode Panagrellus redivivus in vitro. These results indicated that the two different bacterial extracellular proteases might play differential roles at different stages of infection or a synthetic role in penetration of nematode cuticle in B. laterosporus. This is among the first reports to systematically evaluate and define the roles of different bacterial extracellular proteases in infection against nematodes.  相似文献   

20.
Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1?, pXO2?), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system was used to sequentially delete the genes encoding six proteases (InhA1, InhA2, camelysin, TasA, NprB, and MmpZ). The role of each protease in degradation of the B. anthracis toxin components and ALO was demonstrated. Levels of the anthrax toxin components and ALO in the supernatant of the sporulation defective, pXO1? A35HMS mutant strain deleted for the six proteases were significantly increased and remained stable over 24 h. A pXO1-free variant of this six-protease mutant strain, designated BH460, provides an improved host strain for the preparation of recombinant proteins. As an example, BH460 was used to produce recombinant EF, which previously has been difficult to obtain from B. anthracis. The EF protein produced from BH460 had the highest in vivo potency of any EF previously purified from B. anthracis or Escherichia coli hosts. BH460 is recommended as an effective host strain for recombinant protein production, typically yielding greater than 10mg pure protein per liter of culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号