首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clearance of fibrin through proteolytic degradation is a critical step of matrix remodeling that contributes to tissue repair in a variety of pathological conditions, such as stroke, atherosclerosis, and pulmonary disease. However, the molecular mechanisms that regulate fibrin deposition are not known. Here, we report that the p75 neurotrophin receptor (p75NTR), a TNF receptor superfamily member up-regulated after tissue injury, blocks fibrinolysis by down-regulating the serine protease, tissue plasminogen activator (tPA), and up-regulating plasminogen activator inhibitor-1 (PAI-1). We have discovered a new mechanism in which phosphodiesterase PDE4A4/5 interacts with p75NTR to enhance cAMP degradation. The p75NTR-dependent down-regulation of cAMP results in a decrease in extracellular proteolytic activity. This mechanism is supported in vivo in p75NTR-deficient mice, which show increased proteolysis after sciatic nerve injury and lung fibrosis. Our results reveal a novel pathogenic mechanism by which p75NTR regulates degradation of cAMP and perpetuates scar formation after injury.  相似文献   

2.
Electrophysiological recordings (using the slow-AHP potassium current) together with novel biosensor imaging methods (with AKAR and Epac sensors) were used in preparations of rodent brain slices to record PKA activation in real time and in individual neurons. The experiments revealed the propagation of the PKA signal from the membrane to the cytosol and eventually to the nucleus. The experiments show how the geometry of the neurons combined with phosphodiesterase activities (mostly rolipram-sensitive PDE4) contributes to a functional compartmentation of the cAMP in subcellular domains.  相似文献   

3.
The PDE4 catalytic machinery comprises, in part, two divalent cations in a binuclear motif. Here we report that PDE4A4 expressed in Sf9 cells exhibits a biphasic Mg(2+) dose-response (EC(50) of 0.15 and >10 mM) in catalyzing cAMP hydrolysis. In vitro phosphorylation of PDE4A4 by the PKA-catalytic subunit increases the enzyme's sensitivity to Mg(2+), leading to 4-fold increased cAMP hydrolysis without affecting its K(m). The phosphorylation also increases the potencies of (R)- and (S)-rolipram without affecting CDP-840 and SB-207499. The results support that modulating the cofactor binding affinity of PDE4 represents a mechanism for regulating its activity.  相似文献   

4.
Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.  相似文献   

5.
Gravin, a multivalent A-kinase anchoring protein (AKAP), localizes to the cell periphery in several cell types and is postulated to target PKA and other binding partners to the plasma membrane. An N-terminal myristoylation sequence and three regions rich in basic amino acids are proposed to mediate this localization. Reports indicating that phorbol ester affects the distribution of SSeCKS, the rat orthologue of gravin, further suggest that PKC may also regulate the subcellular distribution of gravin, which in turn may affect PKA distribution. In this study, quantitative confocal microscopy of cells expressing full-length and mutant gravin-EGFP constructs lacking the proposed targeting domains revealed that either the N-myristoylation site or the polybasic regions were sufficient to target gravin to the cell periphery. Moreover, phorbol ester treatment induced redistribution of gravin-EGFP from the cell periphery to a juxtanuclear vesicular compartment, but this required the presence of the N-myristoylation site. Confocal microscopy further revealed that not only did gravin-EGFP target a PKA RII-ECFP construct to the cell periphery, but PKC activation resulted in redistribution of the gravin and PKA constructs to the same subcellular site. It is postulated that this dynamic response by gravin to PKC activity may mediate PKC dependent control of PKA activity.  相似文献   

6.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   

7.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   

8.
IntroductionThis work was undertaken to delineate intracellular signaling pathways for the PDE4 inhibitor apremilast and to examine interactions between apremilast, methotrexate and adenosine A2A receptors (A2AR).MethodsAfter apremilast and LPS incubation, intracellular cAMP, TNF-α, IL-10, IL-6 and IL-1α were measured in the Raw264.7 monocytic murine cell line. PKA, Epac1/2 (signaling intermediates for cAMP) and A2AR knockdowns were performed by shRNA transfection and interactions with A2AR and A2BR, as well as with methotrexate were tested in vitro and in the murine air pouch model. Statistical differences were determined using one or two-way ANOVA or Student’s t test. The alpha nominal level was set at 0.05 in all cases. A P value of < 0.05 was considered significant.ResultsIn vitro, apremilast increased intracellular cAMP and inhibited TNF-α release (IC50=104nM) and the specific A2AR-agonist CGS21680 (1μM) increased apremilast potency (IC50=25nM). In this cell line, apremilast increased IL-10 production. PKA, Epac1 and Epac2 knockdowns prevented TNF-α inhibition and IL-10 stimulation by apremilast. In the murine air pouch model, both apremilast and MTX significantly inhibited leukocyte infiltration, while apremilast, but not MTX, significantly inhibited TNF-α release. The addition of MTX (1 mg/kg) to apremilast (5 mg/kg) yielded no more inhibition of leukocyte infiltration or TNF-α release than with apremilast alone.ConclusionsThe immunoregulatory effects of apremilast appear to be mediated by cAMP through the downstream effectors PKA, Epac1, and Epac2. A2AR agonism potentiated TNF-α inhibition by apremilast, consistent with the cAMP-elevating effects of that receptor. Because the A2AR is also involved in the anti-inflammatory effects of MTX, the mechanism of action of both drugs involves cAMP-dependent pathways and is therefore partially overlapping in nature.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0771-6) contains supplementary material, which is available to authorized users.  相似文献   

9.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   

10.
Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.Subject terms: Kinases, Autophagy  相似文献   

11.
12.
Proper regulation of cellular functions relies upon a network of intricately interwoven signaling cascades in which multiple components must be tightly coordinated both spatially and temporally. To better understand how this network operates within the cellular environment, it is important to define the parameters of various signaling activities and to reveal the characteristic activity structure of the signaling cascades. This task calls for molecular tools capable of parallelly tracking multiple activities in cellular time and space with high sensitivity and specificity. Here, we present new biosensors developed based on two conveniently co-imageable FRET pairs consisting of CFP-RFP and YFP-RFP, specifically Cerulean-mCherry and mVenus-mCherry, for parallel monitoring of PKA activity and cAMP dynamics in living cells. These biosensors provide orthogonal readouts in co-imaging experiments and display a comparable dynamic range to their cyan-yellow counterparts. Characterization of signaling responses induced by a panel of pathway activators using this co-imaging approach reveals distinct activity and kinetic patterns of cAMP and PKA dynamics arising from differential signal activation and processing. This technique is therefore useful for parallel monitoring of multiple signaling dynamics in single living cells and represents a promising approach towards a more precise characterization of the activity structure of the dynamic cellular signaling network.  相似文献   

13.
14.
15.
Cyclic AMP (cAMP)-dependent phosphorylation has been reported to exert biological effects in both the mitochondrial matrix and outer mitochondrial membrane (OMM). However, the kinetics, targets, and effectors of the cAMP cascade in these organellar domains remain largely undefined. Here we used sensitive FRET-based sensors to monitor cAMP and protein kinase A (PKA) activity in different mitochondrial compartments in real time. We found that cytosolic cAMP did not enter the matrix, except during mitochondrial permeability transition. Bicarbonate treatment (expected to activate matrix-bound soluble adenylyl cyclase) increased intramitochondrial cAMP, but along with membrane-permeant cAMP analogues, failed to induce measureable matrix PKA activity. In contrast, the OMM proved to be a domain of exceptionally persistent cAMP-dependent PKA activity. Although cAMP signaling events measured on the OMM mirrored those of the cytosol, PKA phosphorylation at the OMM endured longer as a consequence of diminished control by local phosphatases. Our findings demonstrate that mitochondria host segregated cAMP cascades with distinct functional and kinetic signatures.  相似文献   

16.
Spatiotemporal regulation of protein kinase A (PKA) activity involves the manipulation of compartmentalized cAMP pools. Now we demonstrate that the muscle-selective A-kinase anchoring protein, mAKAP, maintains a cAMP signaling module, including PKA and the rolipram-inhibited cAMP-specific phosphodiesterase (PDE4D3) in heart tissues. Functional analyses indicate that tonic PDE4D3 activity reduces the activity of the anchored PKA holoenzyme, whereas kinase activation stimulates mAKAP-associated phosphodiesterase activity. Disruption of PKA- mAKAP interaction prevents this enhancement of PDE4D3 activity, suggesting that the proximity of both enzymes in the mAKAP signaling complex forms a negative feedback loop to restore basal cAMP levels.  相似文献   

17.
Terminal differentiation of both stalk and spore cells in Dictyostelium can be triggered by activation of cAMP-dependent protein kinase (PKA). A screen for mutants where stalk and spore cells mature in isolation produced three genes which may act as negative regulators of PKA: rdeC (encoding the PKA regulatory subunit), regA and rdeA. The biochemical properties of RegA were studied in detail. One domain is a cAMP phosphodiesterase (Km approximately 5 microM); the other is homologous to response regulators (RRs) of two-component signal transduction systems. It can accept phosphate from acetyl phosphate in a reaction typical of RRs, with transfer dependent on Asp212, the predicted phosphoacceptor. RegA phosphodiesterase activity is stimulated up to 8-fold by the phosphodonor phosphoramidate, with stimulation again dependent on Asp212. This indicates that phosphorylation of the RR domain activates the phosphodiesterase domain. Overexpression of the RR domain in wild-type cells phenocopies a regA null. We interpret this dominant-negative effect as due to a diversion of the normal flow of phosphates from RegA, thus preventing its activation. Mutation of rdeA is known to produce elevated cAMP levels. We propose that cAMP breakdown is controlled by a phosphorelay system which activates RegA, and may include RdeA. Cell maturation should be triggered when this system is inhibited.  相似文献   

18.
The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5′ AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response.  相似文献   

19.
《Biophysical journal》2022,121(14):2693-2711
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types wherein enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.  相似文献   

20.
Mutations in the hedgehog (Hh) signaling are implicated in birth defects and cancers, including medulloblastoma (MB), one of the most malignant pediatric brain tumors. Current Hh inhibitors face the challenge of drug resistance and tumor relapse, urging new insights in the Hh pathway regulation. Our previous study revealed how PDE4D controls global levels of cAMP in the cytoplasm to positively regulate Hh signaling; in the present study, we found that a specific isoform PDE4D3 is tethered to the centrosome by Myomegalin (Mmg), a centrosome/Golgi-associated protein. Mmg loss dislocates PDE4D3 from the centrosome, leading to local PKA overactivation and inhibition of the Hh signaling, leaving other PKA-related pathways unaffected. Mmg loss suppresses the proliferation of granule neuron precursors and blocks the growth of MB in mouse model. Our findings specify a new regulatory mechanism of the Hh pathway and highlight an exciting therapeutic avenue for Hh-related cancers with reduced side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号