首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marinomonas mediterranea is a recently isolated melanogenic marine bacterium containing laccase and tyrosinase activities. These activities are due to the expression of two polyphenol oxidases (PPOs), a blue multicopper laccase and an SDS-activated tyrosinase. The gene encoding the first one, herein denominated M. mediterranea PpoA, has been isolated by transposon mutagenesis, cloned and expressed in Escherichia coli. Its predicted amino acid sequence shows the existence of a signal peptide and four copper-binding sites characteristic of the blue multicopper proteins, including all fungal laccases. In addition, two additional putative copper-binding sites near its N-terminus are also present. Recombinant expression in E. coli of this protein clearly demonstrates its multipotent capability, showing both laccase-like and tyrosinase-like activities. This is the first prokaryotic laccase sequenced and the first PPO showing such multipotent catalytic activity. The expression of several truncated products indicates that the four copper-binding sites typical of blue multicopper proteins are essential for the laccase activity of this enzyme. However, the last two of these sites are not necessary for tyrosine hydroxylase activity as this activity is retained in a truncated product containing the first two sites as well as the extra histidine-rich clusters close to the N-terminus of the protein.  相似文献   

2.
Marinomonas mediterranea is a melanogenic marine bacterium expressing a multifunctional polyphenol oxidase (PPO) able to oxidize substrates characteristic for laccases and tyrosinases, as well as produce a classical tyrosinase. A new and quick method has been developed for screening laccase activity in culture plates to detect mutants differentially affected in this PPO activity. Transposon mutagenesis has been applied for the first time to M. mediterranea by using different minitransposons loaded in R6K-based suicide delivery vectors mobilizable by conjugation. Higher frequencies of insertions were obtained by using mini-Tn10 derivatives encoding kanamycin or gentamycin resistance. After applying this protocol, a multifunctional PPO-negative mutant was obtained. By using the antibiotic resistance cassette as a marker, flanking regions were cloned. Then the wild-type gene was amplified by PCR and was cloned and sequenced. This is the first report on cloning and sequencing of a gene encoding a prokaryotic enzyme with laccase activity. The deduced amino acid sequence shows the characteristic copper-binding sites of other blue copper proteins, including fungal laccases. In addition, it shows some extra copper-binding sites that might be related to its multipotent enzymatic capability.  相似文献   

3.
The sequence of the tyrosinase gene cloned from Marinomonas mediterranea is reported. It is the second tyrosinase cloned from a Gram negative bacterium. Its size is higher than that of Gram positive tyrosinases from Streptomyces, and more similar to the eukaryotic enzymes. Its sequence shares the features of copper-binding sites found in all tyrosinases. Based in the comparison of tyrosinases from all types of organisms, an extension of the characteristic signatures existing at Prosite is proposed. This tyrosinase shares with some plant and amphibian tyrosinases a strong specific activation by submicellar concentrations of SDS. Intrinsic fluorescence and kinetic properties indicate that the activation is caused by an SDS-dependent conformational change that facilitates the substrate accessibility to the dicopper active site.  相似文献   

4.
The melanogenic marine bacterium Marinomonas mediterranea synthesizes a novel antimicrobial protein (LodA) with lysine‐epsilon oxidase activity (EC 1.4.3.20). Homologues to LodA have been detected in several Gram‐negative bacteria, where they are involved in biofilm development. Adjacent to lodA is located a second gene, lodB, of unknown function. This genomic organization is maintained in all the microorganisms containing homologues to these genes. In this work we show that lodA and lodB constitute an operon. Western blot analysis and enzymatic determinations revealed that LodA is secreted to the external medium when the culture reaches the stationary phase. LodB, on the other hand, has only been detected inside cells, but it is not secreted. The expression of the lysine‐epsilon oxidase (LOD) activity in M. mediterranea requires functional copies of both genes since mutants lacking either lodA or lodB do not show any LOD activity. The active form of LodA containing the quinonic cofactor is intracellularly generated in a process that takes place only in the presence of LodB, suggesting that the latter is involved in this process. Moreover, in the absence of one of the proteins, the stability of the partner protein is compromised leading to a marked decrease in its cellular levels.  相似文献   

5.
The sequence of the tyrosinase gene cloned from Marinomonas mediterranea is reported. It is the second tyrosinase cloned from a Gram negative bacterium. Its size is higher than that of Gram positive tyrosinases from Streptomyces, and more similar to the eukaryotic enzymes. Its sequence shares the features of copper‐binding sites found in all tyrosinases. Based in the comparison of tyrosinases from all types of organisms, an extension of the characteristic signatures existing at Prosite is proposed. This tyrosinase shares with some plant and amphibian tyrosinases a strong specific activation by submicellar concentrations of SDS. Intrinsic fluorescence and kinetic properties indicate that the activation is caused by an SDS‐dependent conformational change that facilitates the substrate accessibility to the dicopper active site.  相似文献   

6.
Marinocine is a broad-spectrum antibacterial protein synthesized by the melanogenic marine bacterium Marinomonas mediterranea. This work describes the basis for the antibacterial activity of marinocine and the identification of the gene coding for this protein. The antibacterial activity is inhibited under anaerobic conditions and by the presence of catalase under aerobic conditions. Marinocine is active only in culture media containing l-lysine. In the presence of this amino acid, marinocine generates hydrogen peroxide, which causes cell death as confirmed by the increased sensitivity to marinocine of Escherichia coli strains mutated in catalase activity. The gene coding for this novel enzyme was cloned using degenerate PCR with primers designed based on conserved regions in the antimicrobial protein AlpP, synthesized by Pseudoalteromonas tunicata, and some hypothetical proteins. The gene coding for marinocine has been named lodA, standing for lysine oxidase, and it seems to form part of an operon with a second gene, lodB, that codes for a putative dehydrogenase flavoprotein. The identity of marinocine as LodA has been demonstrated by N-terminal sequencing of purified marinocine and generation of lodA mutants that lose their antimicrobial activity. This is the first report on a bacterial lysine oxidase activity and the first time that a gene encoding this activity has been cloned.  相似文献   

7.
8.
This work describes the purification and partial characterization of a novel antibacterial compound, here named marinocine, produced by Marinomonas mediterranea, a melanogenic marine bacterium with rich secondary metabolism. The antibacterial compound is a protein detected in the medium at death phase of growth. It has been purified to apparent homogeneity from the supernatants of cultures by means of ethanol precipitation followed by column chromatographies on DEAE-Sephadex and Sephacryl HR-200. The protein has an apparent molecular mass of 140-170 kDa according to gel permeation chromatography and non-denaturing SDS-PAGE, although in denaturing SDS-PAGE two mayor bands of 97 and 185 kDa appear. Marinocine is relatively heat-stable and shows a great resistance against many hydrolytic enzymes such as glycosidases, lipase, and proteases. The antibacterial range of the molecule includes Gram-positive and Gram-negative microorganisms, as well as some nosocomial isolates, Staphylococcus aureus and Pseudomonas sp., highly resistant to classical antibiotics. By contrast, marinocine did not show any effect on the eukaryotic microorganisms tested. Regarding eukaryotic CHO cells, the decrease on viability was much lower than the one observed on bacterial cells.  相似文献   

9.
10.
Marinomonas mediterranea MMB-1(T) Solano & Sanchez-Amat 1999 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. This species is of interest because it is the only species described in the genus Marinomonas to date that can synthesize melanin pigments, which is mediated by the activity of a tyrosinase. M. mediterranea expresses other oxidases of biotechnological interest, such as a multicopper oxidase with laccase activity and a novel L-lysine-epsilon-oxidase. The 4,684,316 bp long genome harbors 4,228 protein-coding genes and 98 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

11.
The reaction of terminal oxidation of the substrate (catechol) by molecular oxygen catalyzed by o-diphenoloxidase (o-diphenol: oxygen oxydoreductase; EC 1.10.3.1) is found to occur via a free radical mechanism. The copper of the active center changes its valency during the reaction. The spectra of substrate radicals and of the Cu2+ ions were registered by means of a high sensitivity ESR-spectrometer and their concentrations were determined.  相似文献   

12.
Some aspects of catalysis by the amine oxidase of pea seedlings   总被引:4,自引:0,他引:4  
  相似文献   

13.
The melanogenic marine bacterium Marinomonas mediterranea contains a multipotent polyphenol oxidase (PPO) able to oxidize substrates characteristic for tyrosinase and laccase. Thus, this enzyme shows tyrosine hydroxylase activity and it catalyzes the oxidation of a wide variety of o-diphenol as well as o-methoxy-activated phenols. The study of its sensitivity to different inhibitors also revealed intermediate features between laccase and tyrosinase. It is similar to tyrosinases in its sensitivity to tropolone, but it resembles laccases in its resistance to cinnamic acid and phenylthiourea, and in its sensitivity to fluoride anion. This enzyme is mostly membrane-bound and can be solubilized either by non-ionic detergent or lipase treatments of the membrane. The expression of this enzymatic activity is growth-phase regulated, reaching a maximum in the stationary phase of bacterial growth, but L-tyrosine, Cu(II) ions, or 2,5-xylidine do not induce it. This enzyme can be separated from a second PPO form by gel permeation chromatography. The second PPO is located in the soluble fraction and shows a sodium dodecyl sulfate (SDS)-activated action on the characteristic substrates for tyrosinase, L-tyrosine, and L-dopa, but it does not show activity towards laccase-specific substrates. The involvement of the multipotent PPO in melanogenesis and its relationship with the SDS-activated form and with the alternative functions proposed for multicopper oxidases in other microorganisms are discussed.  相似文献   

14.
Plant mitochondria contain a non-protonmotive alternative oxidase (AOX) that couples the oxidation of ubiquinol to the complete reduction of oxygen to water. In this paper we review theoretical and experimental studies that have contributed to our current structural and mechanistic understanding of the oxidase and to the clarification of the molecular nature of post-translational regulatory phenomena. Furthermore, we suggest a catalytic cycle for AOX that involves at least one transient protein-derived radical. The model is based on the reviewed information and on recent insights into the mechanisms of cytochrome c oxidase and the hydroxylase component of methane monooxygenase.  相似文献   

15.
The characterization of three bacterial strains isolated from cultured oysters and seawater at the Spanish Mediterranean coast has been performed. Strains were phenotypically and genetically characterized and the results led us to identify them as members of the genus Marinomonas. A phylogenetic analysis based on the almost complete 16S rDNA sequences clustered all three strains together (with sequence similarities around 99.8%) in the vicinity of M. communis and M. vaga sequences and distantly related to the other four species of the genus. The most closely related species was M. communis that shared 97.4-97.6% with the Mediterranean strains. DNA-DNA hybridizations were performed to clarify the taxonomic position of our isolates and the results confirmed their specific isolation, with interspecific binding ratios below 59%. We propose the bacteria to constitute a new Marinomonas species, i.e. M. aquamarina and strain 11SM4T (CECT 5080T, CIP 108405T, CCUG 49439T) as the type strain.  相似文献   

16.
Tai LA  Hwang KC 《Biochemistry》2004,43(16):4869-4876
Xanthine oxidase (XOD) consists of two identical subunits. For the past 50 years or so, it was assumed that the two subunits carry out catalysis independently. Herein, we report that the presence of 6-formylpterin (6FP) or other substrates (such as xanthine or xanthopterin) at one of the two active sites affects the binding affinity and catalysis rate of 6FP at the other. When the two XOD active sites were occupied by two 6FPs simultaneously, the conversion rate (2.8 x 10(-3) s(-1)) of 6FP to 6CP is 2.95-fold faster than the conversion rate (0.95 x 10(-3) s(-1)) in the case of single 6FP bound condition. The presence of xanthine can accelerate the catalysis rate of 6FP by XOD as well as the activity-recovering rate of alloxanthine-inhibited XOD. Our experimental observations demonstrate unambiguously that the two XOD subunits are strongly cooperative in both binding and catalysis. The inhibition constant (Ki) of 6FP toward XOD was measured by a stopped-flow method to be 0.94 nM.  相似文献   

17.
The discovery that the flavoprotein oxidase, Erv2p, provides oxidizing potential for disulfide bond formation in yeast, has led to investigations into the roles of the mammalian homologues of this protein. Mammalian homologues of Erv2p include QSOX (sulfhydryl oxidases) from human lung fibroblasts, guinea-pig endometrial cells and rat seminal vesicles. In the present study we show that, when expressed in mammalian cells, the longer version of human QSOX1 protein (hQSOX1a) is a transmembrane protein localized primarily to the Golgi apparatus. We also present the first evidence showing that hQSOX1a can act in vivo as an oxidase. Overexpression of hQSOX1a suppresses the lethality of a complete deletion of ERO1 (endoplasmic reticulum oxidase 1) in yeast and restores disulfide bond formation, as assayed by the folding of the secretory protein carboxypeptidase Y.  相似文献   

18.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

19.
Polyamine oxidase (PAO) carries out the FAD-dependent oxidation of the secondary amino groups of spermidine and spermine, a key reaction in the polyamine catabolism. The active site of PAO consists of a 30 A long U-shaped catalytic tunnel, whose innermost part is located in front of the flavin ring. To provide insight into the PAO substrate specificity and amine oxidation mechanism, we have investigated the crystal structure of maize PAO in the reduced state and in complex with three different inhibitors, guazatine, 1,8-diaminooctane, and N(1)-ethyl-N(11)-[(cycloheptyl)methyl]-4,8-diazaundecane (CHENSpm). In the reduced state, the conformation of the isoalloxazine ring and the surrounding residues is identical to that of the oxidized enzyme. Only Lys300 moves away from the flavin to compensate for the change in cofactor protonation occurring upon reduction. The structure of the PAO.inhibitor complexes reveals an exact match between the inhibitors and the PAO catalytic tunnel. Inhibitor binding does not involve any protein conformational change. Such lock-and-key binding occurs also in the complex with CHENSpm, which forms a covalent adduct with the flavin N5 atom. Comparison of the enzyme complexes hints at an "out-of-register" mechanism of inhibition, in which the inhibitor secondary amino groups are not properly aligned with respect to the flavin to allow oxidation. Except for the Glu62-Glu170 pair, no negatively charged residues are involved in the recognition of substrate and inhibitor amino groups, which is in contrast to other polyamine binding proteins. This feature may be exploited in the design of drugs specifically targeting PAO.  相似文献   

20.
Bruckner RC  Winans J  Jorns MS 《Biochemistry》2011,50(22):4949-4962
N-Methyltryptophan oxidase (MTOX) contains covalently bound FAD. N-Methyltryptophan binds in a cavity above the re face of the flavin ring. Lys259 is located above the opposite, si face. Replacement of Lys259 with Gln, Ala, or Met blocks (>95%) covalent flavin incorporation in vivo. The mutant apoproteins can be reconstituted with FAD. Apparent turnover rates (k(cat,app)) of the reconstituted enzymes are ~2500-fold slower than those of wild-type MTOX. Wild-type MTOX forms a charge-transfer E(ox)·S complex with the redox-active anionic form of NMT. The E(ox)·S complex formed with Lys259Gln does not exhibit a charge-transfer band and is converted to a reduced enzyme·imine complex (EH(2)·P) at a rate 60-fold slower than that of wild-type MTOX. The mutant EH(2)·P complex contains the imine zwitterion and exhibits a charge-transfer band, a feature not observed with the wild-type EH(2)·P complex. Reaction of reduced Lys259Gln with oxygen is 2500-fold slower than that of reduced wild-type MTOX. The latter reaction is unaffected by the presence of bound product. Dissociation of the wild-type EH(2)·P complex is 80-fold slower than k(cat). The mutant EH(2)·P complex dissociates 15-fold faster than k(cat,app). Consequently, EH(2)·P and free EH(2) are the species that react with oxygen during turnover of the wild-type and mutant enzyme, respectively. The results show that (i) Lys259 is the site of oxygen activation in MTOX and also plays a role in holoenzyme biosynthesis and N-methyltryptophan oxidation and (ii) MTOX contains separate active sites for N-methyltryptophan oxidation and oxygen reduction on opposite faces of the flavin ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号