首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular survey technique was used to investigate the diversity of terrestrial tardigrades from three sites within Scotland. Ribosomal small subunit sequence was used to classify specimens into molecular operational taxonomic units (MOTU). Most MOTU were identified to the generic level using digital voucher photography. Thirty-two MOTU were defined, a surprising abundance given that the documented British fauna is 68 species. Some tardigrade MOTU were shared between the two rural collection sites, but no MOTU were found in both urban and rural sites, which conflicts with models of ubiquity of meiofaunal taxa. The patterns of relatedness of MOTU were particularly intriguing, with some forming clades with low levels of divergence, suggestive of taxon flocks. Some morphological taxa contained well-separated MOTU, perhaps indicating the existence of cryptic taxa. DNA sequence-based MOTU proved to be a revealing method for meiofaunal diversity studies.  相似文献   

2.
Jones M  Ghoorah A  Blaxter M 《PloS one》2011,6(4):e19259

Background

DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU) and for associating these MOTU with known organismal taxonomies.

Results

Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation.

Conclusions

jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/.  相似文献   

3.
Least-inclusive taxonomic unit: a new taxonomic concept for biology   总被引:2,自引:0,他引:2  
Phylogenetic taxonomy has been introduced as a replacement for the Linnaean system. It differs from traditional nomenclature in defining taxon names with reference to phylogenetic trees and in not employing ranks for supraspecific taxa. However, 'species' are currently kept distinct. Within a system of phylogenetic taxonomy we believe that taxon names should refer to monophyletic groups only and that species should not be recognized as taxa. To distinguish the smallest identified taxa, we here introduce the least-inclusive taxonomic unit (LITU), which are differentiated from more inclusive taxa by initial lower-case letters. LITUs imply nothing absolute about inclusiveness, only that subdivisions are not presently recognized.  相似文献   

4.
Molecular barcodes for soil nematode identification   总被引:20,自引:0,他引:20  
Using a molecular barcode, derived from single-specimen polymerase chain reaction (PCR) and sequencing of the 5' segment of the small subunit ribosomal RNA (SSU) gene, we have developed a molecular operational taxonomic unit (MOTU) scheme for soil nematodes. Individual specimens were considered to belong to the same MOTU when the sequenced segment of 450 bases was > 99.5% identical. A Scottish upland Agrostis-Festuca grassland soil was sampled, using both culture-based and random selection methods. One hundred and sixty-six cultured isolates were sequenced, and clustered into five MOTU. From 74 randomly sampled individuals across the study site, 19 MOTU were defined. A subsequent sample of 18 individuals from a single subplot contained eight MOTU, four of which were unique to the single subplot sample. Interestingly, seven of these MOTU were not present in the culture-independent sampling. Overall, a total of 23 MOTU were defined from only 240 sequences. Many MOTU could readily be assigned to classical, morphologically defined taxonomic units using a database of SSU sequences from named nematode species. The MOTU technique allows a rapid assessment of nematode taxon diversity in soils. Correlation with a database of sequences from known species offers a route to application of the technique in ecological surveys addressing biological as well as genetic diversity.  相似文献   

5.
We have developed a molecular barcode system that uses the small subunit ribosomal RNA (SSU) sequence to define molecular operational taxonomic units (MOTU) of soil nematodes. Here we attempt to differentiate five cultured isolates of a taxonomically difficult genus, Panagrolaimus, using morphological, molecular, and biological (breeding) criteria. The results indicated that the five culture populations belonged to two reproductively isolated species. The available morphological criteria, including scanning electron microscopy (SEM), were insufficient to differentiate among them, and all five could be classified as one morphospecies. Within-culture variation of the morphometrical data did not discern between the two biological species. Sequence data clearly separated the populations into two groups that supported the breeding results. Given this study represented only five populations of one genus, we suggest a congruence of MOTU analysis with the biological species concept. This multifaceted approach is promising for future identification of nematodes as it is simple, comparable, and transferable.  相似文献   

6.
The recent multiplication of cladistic hypotheses for many zoological groups poses a challenge to zoological nomenclature following the International Code of Zoological Nomenclature: in order to account for these hypotheses, we will need many more ranks than currently allowed in this system, especially in lower taxonomy (around the ranks genus and species). The current Code allows the use of as many ranks as necessary in the family-series of nomina (except above superfamily), but forbids the use of more than a few ranks in the genus and species-series. It is here argued that this limitation has no theoretical background, does not respect the freedom of taxonomic thoughts or actions, and is harmful to zoological taxonomy in two respects at least: (1) it does not allow to express in detail hypothesized cladistic relationships among taxa at lower taxonomic levels (genus and species); (2) it does not allow to point taxonomically to low-level differentiation between populations of the same species, although this would be useful in some cases for conservation biology purposes. It is here proposed to modify the rules of the Code in order to allow use by taxonomists of an indeterminate number of ranks in all nominal-series. Such an 'expanded nomenclatural system' would be highly flexible and likely to be easily adapted to any new finding or hypothesis regarding cladistic relationships between taxa, at genus and species level and below. This system could be useful for phylogeographic analysis and in conservation biology. In zoological nomenclature, whereas robustness of nomina is necessary, the same does not hold for nomenclatural ranks, as the latter are arbitrary and carry no special biological, evolutionary or other information, except concerning the mutual relationships between taxa in the taxonomic hierarchy. Compared to the Phylocode project, the new system is equally unambiguous within the frame of a given taxonomic frame, but it provides more explicit and informative nomina for non-specialist users, and is more economic in terms of number of nomina needed to account for a given hierarchy. These ideas are exemplified by a comparative study of three possible nomenclatures for the taxonomy recently proposed by Hillis and Wilcox (2005) for American frogs traditionally referred to the genus Rana.  相似文献   

7.
The problem of coordinating the traditional and modern approaches to systematics is ever-lasting due to the continuous development and enrichment of our knowledge of biodiversity, means of analysis, and concepts. Comparative morphology was and still is the cornerstone of studies of insect taxonomy. It gives the most extensive and diverse information on the organisms studied, particularly when it is supported by the data on embryology and functional morphology as well as by analysis of adaptive significance of morphological characters. The limitations of this approach are often related to the presence of homoplasies, reversions, etc. Comparative paleontology is the only approach providing direct evidence of the historical succession of taxa and their characters. However, this approach is fully applicable only to some groups due to the specific features of their morphology and taphonomy. All the modern approaches (molecular, cytogenetic, etc.) are very informative but also have their own limitations; they should not be contrasted with the traditional approaches and certainly should not replace them. The traditional approaches do not become obsolete; it is only their comparative importance in the set of taxonomic tools that may be reevaluated. No single approach can be considered universal for an unambiguous reconstruction of phylogeny and substantiation of the natural system of taxa. Each approach has its own advantages and limitations, and only combined use of different approaches allows a broader range of the problems to be solved. Different approaches may prevail in the studies of different groups of insects and at different levels of taxonomic hierarchy. The intuition of the taxonomist, which is so often criticized by the followers of “objective” systematics, is based on taxonomic experience and scope of knowledge of a particular taxon. It does not imply a subjective bias, but allows the taxonomist to choose the instruments adequate to a particular case.  相似文献   

8.
9.
Cladistic analysis strongly depends on accurate character choice. Usually, characters include morphology or molecules, but other sources of evidence are also employed. These include stratigraphic ages of taxa and behavioural data. The inclusion of time is a controversial issue, which has no Darwinian basis. However, the cladistic treatment of stratigraphic age has the potential to resolve problematic phylogenies. Here, it is proposed that the use of stratigraphic data in phylogenetic inference should be seen as a temporary shortcut, to resolve complex phylogenies in the wait for new character and taxonomic samplings, because phylogenetic hypotheses should be based on biological evidence only. Archaeologists working on toolmaking can provide behavioural data in human prehistory. In fact, while a tool itself is not biological evidence, the movements of hands and arms needed to prepare it are biological evidence and can be compared and scored for cladistic analysis. Such an approach has been formalized in studies on functional morphology of some vertebrates. The taxonomic data set to be used in cladistic analysis should include as many taxa as possible, and also very incomplete specimens should be used. In many cases, incomplete specimens had the potential to resolve complex phylogenies by adding new character combinations that cannot be scored in molecule-based phylogenetic studies.  相似文献   

10.
AMaCAID is an R program designed to analyse multilocus genotypic patterns in large samples. It allows (i) the computation of the number and frequency of the different multilocus patterns available in a molecular data set and (ii) the analysis of discriminatory power of each combination of k markers among n available. It thus enables the identification of the minimum number of markers required to distinguish all the observed genotypes and the subset of markers that maximize the number of distinct genotypes. AMaCAID can be used with any kind of molecular markers, on data sets mixing different kinds of markers, but also on qualitative characters like morphological or taxonomic traits. AMaCAID has been built primarily to select subsets of markers for identifying accessions and monitoring their genetic stability during regeneration cycles in an ex situ genebank. It can, however, also be used to screen any kind of data set that characterizes a set of individuals or species (e.g. taxonomic or phylogenetic studies) for discrimination purposes. The size of the assayed sample has no limitation, but the program only performs computations on all combinations of markers when there are less than 25 markers. For larger number of markers/characters, it is possible to ask AMaCAID to screen a large but limited number of combinations of markers. We apply AMaCAID to three data sets involving either molecular or taxonomic data and give some results on the computing time of the program with respect to the size of the data set.  相似文献   

11.
DNA metabarcoding allows the analysis of insect communities faster and more efficiently than ever before. However, metabarcoding can be conducted through several approaches, and the consistency of results across methods has rarely been studied. We compare the results obtained by DNA metabarcoding of the same communities using two different markers – COI and 16S – and three different sampling methods: (a) homogenized Malaise trap samples (homogenate), (b) preservative ethanol from the same samples, and (c) soil samples. Our results indicate that COI and 16S offer partly complementary information on Malaise trap samples, with each marker detecting a significant number of species not detected by the other. Different sampling methods offer highly divergent estimates of community composition. The community recovered from preservative ethanol of Malaise trap samples is significantly different from that recovered from homogenate. Small and weakly sclerotized insects tend to be overrepresented in ethanol while strong and large taxa are overrepresented in homogenate. For soil samples, highly degenerate COI primers pick up large amounts of nontarget DNA and only 16S provides adequate analyses of insect diversity. However, even with 16S, very little overlap in molecular operational taxonomic unit (MOTU) content was found between the trap and the soil samples. Our results demonstrate that none of the tested sampling approaches is satisfactory on its own. For instance, DNA extraction from preservative ethanol is not a valid replacement for destructive bulk extraction but a complement. In future metabarcoding studies, both should ideally be used together to achieve comprehensive representation of the target community.  相似文献   

12.
Identification of ichthyoplankton is difficult because fish during early life stages often lack stable morphological characteristics; such difficulty in species identification can be a major hindrance in conducting ichthyoplankton surveys for fish biodiversity investigations. Here, we evaluated the feasibility of a molecular operational taxonomic unit (MOTU) approach for ichthyoplankton investigations, and describe fish biodiversity in the Jinshajiang section of the upper Yangtze River, China. The MOTUs were established by grouping specimens diverging less than 1.00% Kimura two‐parameter (K2P) distance units from their nearest neighbor within the same MOTU, based on previous work on between‐species divergences of the mitochondrial cytochrome C oxidase subunit I (COI) gene. Taxonomic assignment of the MOTUs was performed by comparing the MOTU sequences with the COI sequences of taxonomic species. Sixty‐eight MOTUs were inferred from 818 COI sequences of ichthyoplankton in the Jinshajiang river section. Among those, one MOTU was composed of two identified taxonomic species, and each of the other MOTUs was linked to a single, identified taxonomic species. Only 26 MOTUs were successfully identified to taxonomic species due to the limited reference database. Our results demonstrate that the MOTU approach can be applied successfully for analyzing biodiversity and identifying species of freshwater ichthyoplankton. Compared with previous ichthyoplankton investigations the richness of ichthyoplankton was very high. High diversity of ichthyoplankton noted in our study suggests that the Jinshajiang section should be an important target for fish biodiversity conservation in the Yangtze River.  相似文献   

13.
Clustering approaches are pivotal to handle the many sequence variants obtained in DNA metabarcoding data sets, and therefore they have become a key step of metabarcoding analysis pipelines. Clustering often relies on a sequence similarity threshold to gather sequences into molecular operational taxonomic units (MOTUs), each of which ideally represents a homogeneous taxonomic entity (e.g., a species or a genus). However, the choice of the clustering threshold is rarely justified, and its impact on MOTU over-splitting or over-merging even less tested. Here, we evaluated clustering threshold values for several metabarcoding markers under different criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and trade-off between over-merging and over-splitting. We extracted sequences from a public database for nine markers, ranging from generalist markers targeting Bacteria or Eukaryota, to more specific markers targeting a class or a subclass (e.g., Insecta, Oligochaeta). Based on the distributions of pairwise sequence similarities within species and within genera, and on the rates of over-splitting and over-merging across different clustering thresholds, we were able to propose threshold values minimizing the risk of over-splitting, that of over-merging, or offering a trade-off between the two risks. For generalist markers, high similarity thresholds (0.96–0.99) are generally appropriate, while more specific markers require lower values (0.85–0.96). These results do not support the use of a fixed clustering threshold. Instead, we advocate careful examination of the most appropriate threshold based on the research objectives, the potential costs of over-splitting and over-merging, and the features of the studied markers.  相似文献   

14.
詹玲  于晶  郭水良 《植物学报》2017,52(2):241-253
木灵藓科(Orthotrichaceae)是藓类植物中的第3大科。该科不仅种类多, 生态类型特殊, 而且是世界公认的多样化程度高、分类难度大、系统关系复杂的类群。当代木灵藓科植物分类系统学研究主要集中在该科的地区志编写和专属分类修订。目前, 除了热带美洲、热带非洲的变齿藓属(Zygodon)和火藓属(Schlotheimia)部分类群外, 木灵藓科主要类群的分类修订工作已基本完成, 但是有关亚科和属的划分和地位以及各属之间的关系等方面仍存在众多争议。木灵藓科分支系统学研究也不够系统全面, 有的仅应用了单个基因片段, 或者只涉及少数类群。因此, 需要基于更多的分子和形态学性状, 进一步开展世界木灵藓科植物的系统发育研究, 建立一个更趋自然的木灵藓科分类系统。  相似文献   

15.
Paquin P  Hedin M 《Molecular ecology》2004,13(10):3239-3255
Rapid development in karst-rich regions of the US state of Texas has prompted the listing of four Cicurina species (Araneae, Dictynidae) as US Federally Endangered. A major constraint in the management of these taxa is the extreme rarity of adult specimens, which are required for accurate species identification. We report a first attempt at using mitochondrial DNA (mtDNA) sequences to accurately identify immature Cicurina specimens. This identification is founded on a phylogenetic framework that is anchored by identified adult and/or topotypic specimens. Analysis of approximately 1 kb of cytochrome oxidase subunit I (CO1) mtDNA data for over 100 samples results in a phylogenetic tree that includes a large number of distinctive, easily recognizable, tip clades. These tip clades almost always correspond to a priori species hypotheses, and show nonoverlapping patterns of sequence divergence, making it possible to place species names on a number of immature specimens. Three cases of inconsistency between recovered tip clades and a priori species hypotheses suggest possible introgression between cave-dwelling Cicurina, or alternatively, species synonymy. Although species determination is not possible in these instances, the inconsistencies point to areas of taxonomic ambiguity that require further study. Our molecular phylogenetic sample is largest for the Federally Endangered C. madla. These data suggest that C. madla occurs in more than twice the number of caves as previously reported, and indicate the possible synonymy of C. madla with C. vespera, which is also Federally Endangered. Network analyses reveal considerable genetic divergence and structuring across caves in this species. Although the use of DNA sequences to identify previously 'unidentifiable' specimens illustrates the potential power of molecular data in taxonomy, many other aspects of the same dataset speak to the necessity of a balanced taxonomic approach.  相似文献   

16.
Marine planktonic copepods are an ecologically important group with high species richness and abundance. Here, we propose a new metagenetic approach for revealing the community structure of marine planktonic copepods using 454 pyrosequencing of nuclear large subunit ribosomal DNA. We determined an appropriate similarity threshold for clustering pyrosequencing data into molecular operational taxonomic units (MOTUs) using an artificial community containing 33 morphologically identified species. The 99% similarity threshold had high species‐level resolution for MOTU clustering but overestimated species richness. The artificial community was appropriately clustered into MOTUs at 97% similarity, with little inflation in MOTU numbers and with relatively high species‐level resolution. The number of sequence reads of each MOTU was correlated with dry weight of that taxon, suggesting that sequence reads could be used as a proxy for biomass. Next, we applied the method to field‐collected samples, and the results corresponded reasonably well with morphological analysis of these communities. Numbers of MOTUs were well correlated with species richness at 97% similarity, and large numbers of sequence reads were generally observed in MOTUs derived from species with large biomass. Further, MOTUs were successfully classified into taxonomic groups at the family level at 97% similarity; similar patterns of species richness and biomass were revealed within families with metagenetic and morphological analyses. At the 99% similarity threshold, MOTUs with high proportions of sequence reads were identified as biomass‐dominant species in each field‐collected sample. The metagenetic approach reported here can be an effective tool for rapid and comprehensive assessment of copepod community structure.  相似文献   

17.
18.
We use a comprehensive subset of Canarian angiosperms corresponding to 23 families, 35 genera and 60 Canarian endemic taxa to test whether this flora is suitable to taxonomic identification with the two proposed plant DNA barcode sequences and whether these sequences may reveal the existence of cryptic species overlooked by morphology. The rate of discrimination success between the insular congeneric samples using the rbcL+matK combination and a ‘character‐based’ approach (where we use only the combination of nucleotide positions in an alignment that allows unambiguous species identification) is higher (82.29%) than that obtained with the ‘distance‐based’ approach (80.20%) used by the CBOL Plant Working Group in 2009 and also when compared with tests conducted in other floras. This suggests that the molecular identification of the Canarian endemic flora can be achieved as successfully as in other floras where the incidence of radiation is not as relevant. The facts that (i) a distance‐based criterion was unable to discriminate between congeneric and conspecific comparisons and (ii) only the character‐based discrimination criterion resolved cases that the distance‐based criterion did not, further support the use of a character discrimination approach for a more efficient DNA barcoding of floras from oceanic islands like the Canaries. Thus, a barcoding gap seems not to be necessary for the correct molecular characterization of the Canarian flora. DNA barcodes also suggest the possible existence of cryptic taxa to be further investigated by morphology and that the current taxonomic status of some of the taxa analysed may need revision.  相似文献   

19.
Patterns of variation in levels of homoplasy were explored through statistical analyses of standardized consistency indexes. Data were obtained from 60 recent cladistic analyses of a wide variety of organisms based on several different kinds of characters. Consistency index is highly correlated with the number of taxa included in an analysis, with homoplasy increasing as the number of taxa increases. This observation is compatible with a simple model of character evolution in which 1) the probability of character-state change increases with the total number of branches in a tree and 2) the number of possible states of a character is limited. Consistency index does not show a significant relationship to the number of characters utilized in an analysis or to the taxonomic rank of the terminal taxa. When the relationship between consistency index and number of taxa is taken into account, there is no significant difference between plant and animal data sets in the amount of homoplasy. Likewise, the level of homoplasy in morphological and molecular data sets does not appear to differ significantly, although there are still too few molecular studies to be confident of this result. Future comparisons of consistency indexes, including studies along the lines established here, must take into account the influence of the number of taxa on homoplasy.  相似文献   

20.
Land‐use change is a major driver of the global loss of biodiversity, but it is unclear to what extent this also results in a loss of ecological traits. Therefore, a better understanding of how land‐use change affects ecological traits is crucial for efforts to sustain functional diversity. To this end we tested whether higher species richness or taxonomic distinctness generally leads to increased functional distinctness and whether intensive land use leads to functionally more narrow arthropod communities. We compiled species composition and trait data for 350 species of terrestrial arthropods (Araneae, Carabidae and Heteroptera) in different land‐use types (forests, grasslands and arable fields) of low and high land‐use intensity. We calculated the average functional and taxonomic distinctness and the rarified trait richness for each community. These measures reflect the range of traits, taxonomic relatedness and number of traits that are observed in local communities. Average functional distinctness only increased significantly with species richness in Carabidae communities. Functional distinctness increased significantly with taxonomic distinctness in communities of all analyzed taxa suggesting a high functional redundancy of taxonomically closely related species. Araneae and Heteroptera communities had the expected lower functional distinctness at sites with higher land‐use intensity. More frequently disturbed land‐use types such as managed grasslands or arable fields were characterized by species with smaller body sizes and higher dispersal abilities and communities with lower functional distinctness or trait richness. Simple recommendations about the conservation of functional distinctness of arthropod communities in the face of future land‐use intensification and species loss are not possible. Our study shows that these relationships depend on the studied taxa and land‐use type. However, for some arthropod groups functional distinctness is threatened by intensification and conversion from less to more frequently disturbed land‐uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号