首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phage DNA, as well as plasmid and mammalian DNA's, were exposed to a superoxide and hydroxyl radical-generating system containing NADPH-cytochrome P-450 reductase and mitomycin C, both with and without added Fe3+-ADP, in phosphate buffer at pH 7.5. The generation of superoxide (O2-.) and hydroxyl (.OH) radicals in the system was demonstrated by using ESR spectrometry with N-tert -butyl-alpha-phenylnitrone (PBN) as a spin trapping agent. Only the lambda DNA isolated after exposure to the O2-./.OH-generating system containing many lower molecular weight DNA fragments indicating DNA strand breaks. This breakage was completely inhibited by a .OH radical scavenger (sodium benzoate) and by catalase, but only slightly by superoxide dismutase. Thyroid and plasmid DNA's were both cleaved when exposed to the O2-./.OH-generating systems. It is suggested that the mechanism of DNA scission by mitomycin C described here closely resembles that induced by the anthracycline drugs.  相似文献   

2.
It has been shown that NADH photosensitize in vitro single-strand breaks formation in double-strand plasmid DNA pBR 322 upon near-UV (320-400 nm) irradiation. The number of single-strand breaks depends both on UV light dose and sensitizer concentration. Addition of catalase and sodium benzoate strongly decreases the single-strand breaks formation. The results show an important role of hydrogen peroxide (H2O2) and hydroxyl radical (.OH) in inducing single-strand breaks in plasmid DNA irradiated by near-UV radiation in the presence of NADH.  相似文献   

3.
K Ito  K Yamamoto  S Kawanishi 《Biochemistry》1992,31(46):11606-11613
The mechanism by which hydrazines induce damage to cellular and isolated DNA in the presence of metal ions has been investigated by pulsed-field gel electrophoresis (PFGE), DNA sequencing methods, and the ESR spin-trapping technique. For the detection of single-strand breaks by PFGE, an experimental procedure with alkali treatment has been designed. Isoniazid, hydrazine, and phenylhydrazine induced DNA single- and double-strand breaks in cells pretreated with Mn(II), whereas iproniazid did not. With isolated 32P-DNA, isoniazid produced DNA damage in the presence of Cu(II), Mn(II), or Mn(III). Iproniazid damage isolated DNA only in the presence of Cu(II). The Cu(II)-mediated DNA damage by isoniazid or iproniazid is due to active oxygen species other than hydroxyl free radical (.OH), presumably the Cu(I)-peroxide complex. Cleavage of isolated DNA by isoniazid plus Mn(II) occurred without marked site specificity. The DNA damage was inhibited by .OH scavengers and superoxide dismutase (SOD) but not by catalase, suggesting the involvement of .OH formed via O2- but not via H2O2. Consistently, in ESR experiments .OH formation was observed during Mn(II)-catalyzed autoxidation of isoniazid, and the .OH formation was inhibited by SOD, but not by catalase. Iproniazid plus Mn(II) produced no or little .OH. We propose a reaction mechanism for the .OH formation without a H2O2 intermediate during manganese-catalyzed autoxidation of hydrazine. The present and previous data raise the possibility that hydrazines plus Mn(II)-induced cellular DNA damage may occur, at least in part, through the non-Fenton-type reaction.  相似文献   

4.
Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H(2)Se/HSe(-/)Se(2-)). Among the genes whose deletion caused hypersensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O(2)-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The (?)OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O(2). Finally we showed that, in vivo, toxicity strictly depended on the presence of O(2). Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O(2)-dependent radical-based mechanism.  相似文献   

5.
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells   总被引:19,自引:0,他引:19  
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2.  相似文献   

6.
Cow placenta ribonuclease inhibitor (CPRI) has been purified 5062-fold by affinity chromatography, the product being homogeneous by sodium dodecyl sulfate-gel electrophoresis. The chemiluminescence technique was used to determine the radical scavenging activities of CPRI toward different reactive oxygen species (ROS) including superoxide anion (O2-*), hydroxyl radical (OH*), lipid-derived radicals (R*), and singlet oxygen (1O2). CPRI could effectively scavenge O2-*, OH*, R*, and 1O2 at EC50 of 0.12, 0.008, 0.009, and 0.006 mg/ml, respectively. In addition, the radical scavenging activities of CPRI were higher than those of tea polyphenols, indicating that CPRI is a powerful antioxidant.  相似文献   

7.
We studied the mechanism of formation of oxygen radicals during ferrous ion-induced decomposition of linoleic acid hydroperoxide using the spin trapping and chemiluminescence methods. The formation of the superoxide anion (O2*-) was verified in the present study. The hydroxyl radical is also generated through Fenton type decomposition of hydrogen peroxide produced on disproportionation of O2*-. A carbon-centered radical was detected using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) as a spin trap. Alkoxyl radical formation is essential for the conversion of linoleic acid hydroperoxide into the peroxyl radical by ferrous ion. It is likely that the alkoxyl radical [R1CH(O*)R2] is converted into the hydroxylcarbon radical [R1C*(OH)R2] in water, and that this carbon radical reacts with oxygen to give the alpha-hydroxyperoxyl radical [R1R2C(OH)OO*], which decomposes into the carbocation [R1C+(OH)R2] and O2*-.  相似文献   

8.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

9.
10.
Evidence that hydroxyl radicals mediate auxin-induced extension growth   总被引:17,自引:0,他引:17  
Schopfer P  Liszkay A  Bechtold M  Frahry G  Wagner A 《Planta》2002,214(6):821-828
Reactive oxygen intermediates, i.e. the superoxide radical (O*-)(2), hydrogen peroxide (H2O2) and the hydroxyl radical (*OH), are generally regarded as harmful products of oxygenic metabolism causing cell damage in plants, animals and microorganisms. However, oxygen radical chemistry may also play a useful role in polymer breakdown leading to wall loosening during extension growth of plant cells controlled by the phytohormone auxin. Backbone cleavage of cell wall polysaccharides can be accomplished in vitro by (*OH) produced from H2O2 in a Fenton reaction or in a reaction catalyzed by peroxidase supplied with O2 and NADH. Here, we show that coleoptile growth of maize seedlings is accompanied by the release of reactive oxygen intermediates in the cell wall. Auxin promotes release of (O*-)(2) and subsequent generation of (*OH)when inducing elongation growth. Experimental generation of (*OH) in the wall causes an increase in wall extensibility in vitro and replaces auxin in inducing growth. Auxin-induced growth can be inhibited by scavengers of (O*-)(2), H2O2 or (*OH), or inhibitors interfering with the formation of these molecules in the cell wall. These results provide the experimental background for a novel hypothesis on the mechanism of plant cell growth in which (*OH), produced from (O*-)(2) and H2O2 by cell wall peroxidase, acts as a wall-loosening agent.  相似文献   

11.
Oxidants,antioxidants and carcinogenesis   总被引:9,自引:0,他引:9  
Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of nitrosamine formation and an alteration of metabolic activations of carcinogens. They can prevent genetic changes by inhibiting DNA damage induced by the ROMs. Therefore, these antioxidants may be helpful in the treatment of human cancer. However, detailed studies are required to draw a definite conclusion.  相似文献   

12.
We investigated the inhibitory effects of fluvastain (FV) and its metabolites (M-2, M-3, M-4, M-5, and M-7) on the formation of several reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion (O2-), hydroxy radical (*OH), hypochlorite ion (OCL-), and linoleic acid peroxide (LOO*). Inhibitory effects of pravastatin (PV), simvastatin (SV), probucol (PR) and alpha-tocopherol (TOC) were also tested. The inhibitory effects of 5-hydroxy FV (M-2) and 6-hydroxy FV (M-3) on the formation of 1O2, O2-, *OH, and OCL- were strongest. Scavenging of 1O2 by M-4, M-5, (+)-FV, and (-)-FV was also noted. The inhibitory effects of (+)-FV on the formation of 1O2 were comparable to those of (-)-FV, PV, SV, PR and M-7 had little or no inhibitory effect on the formation of several ROS. In conclusion, FV and its metabolites, particulary M-2 and M-3, have the potential to protect against oxidative stress mediated by several ROS.  相似文献   

13.
The decay of the tetraperoxochromate- (V) complex (CrO83theta) was examined to study the substrate specificity of erythrocuprein (super-oxide dismutase). The decay of CrO83theta proved rather complex in aqueous solutions. Apart from the two known oxygen species O2theta and singlet oxygen (1 deltagO2), H2O2 and probably OH radicals were formed. No unequivocal evidence for the appearance of superoxide was obtained. The possible electron transfer from Cr5 to Fe3 (cytochrome c) was also discussed. In Tris buffer, pH 7.8, there were absolutely no signs of superoxide or OH radical formation. In fact, pulse radiolysis measurements employing a homogeneous OH source demonstrated that the Tris and OH radicals react with each other. One mol of H2O2 was generated from 1 mol of CrO83theta in Tris buffer. By contrast, only 0.5 mol H2O2 could be determined when the CrO83theta decay was carried out in 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES) buffer, pH 7.8. The phenomenon of reducing oxidized cytochrome c could not fully be assigned to a superoxide-mediated reduction, since erythrocuprein was unable to inhibit this cytochrome c reduction efficiently. The energetic oxygen species (1deltag O2, OH etc.) appearing during the CrO83theta decay gave rise to a clearly detectable chemiluminescence. In this system, erythrocuprein was very active regardless of which buffer was used. Even in the absence of a chemiluminescent mediating agent, which might have interferred with the enzyme, erythrocuprein proved capable of inhibiting the CrO83theta-induced chemiluminescence in a rather specific way. No such specificity was seen in the presence of low molecular weight Cu-chelates including Cu(Tyr)2, Cu(Lys)2 and Cu(His)2. The ability to suppress chemiluminescence was approximately 3 orders of magnitude less pronounced than that of the native enzyme. It is presumed that erythrocuprein reacts with oxygen species other than the superoxide radical.  相似文献   

14.
The spin trapping ESR technique was applied to investigate oxygen-derived radicals in ischemic and post-ischemic rat hearts. Using 5,5'-dimethyl-l-pyrroline-N-oxide, carbon-centered radicals were identified during ischemia and oxy-radical adducts (superoxide anion radical, O.-2 and hydroxyl radicals, .OH) in post-ischemic rat heart. The formation of these spin adducts was inhibited by superoxide dismutase, suggesting that superoxide plays a role in the adducts' formation. The results demonstrate that oxygen derived free radicals are important byproducts of abnormal oxidative metabolism during myocardial ischemic and reperfusion injuries.  相似文献   

15.
Nitrogenase in Azotobacter chroococcum whole cells was inhibited by enzymically generated superoxide anion (O2-), hydrogen peroxide, and ethyl hydrogen peroxide. The degree of inhibition produced by O2- was related to the quantity of oxygen supplied to the organisms in continuous cultures. O2- also inhibited oxygen uptake by whole cells. These O2- mediated inhibitions were prevented by bovine superoxide dismutase. The quantities of superoxide dismutase (SOD), and catalase associated with cells grown under varying oxygen concentrations were determined. The role of hydrogen peroxide, and of the hydroxyl radical (.OH) in nitrogenase inhibition was examined. The response of Azotobacter chroococum to oxygen was evaluated with respect to the observed effects of O2- on the organism, and some explanation is given to account for nitrogenase sensitivity to oxygen.  相似文献   

16.
渗透胁迫下稻苗中铁催化的膜脂过氧化作用   总被引:12,自引:0,他引:12  
在-0.7MPa渗透胁迫下,水稻幼苗体内和H2O2大量产生,Fe2+积累,膜脂过氧化作用加剧。水稻幼苗体内Fe2+含量与膜脂过氧化产物MDA含量呈极显著的正相关。外源Fe2+、Fe3+、H2O2、Fe2++H2O2、DDTC均能刺激膜脂过氧化作用,而铁离子的螯合剂DTPA则有缓解作用。OH的清除剂苯甲酸钠和甘露醇能明显地抑制渗透胁迫下Fe2+催化的膜脂过氧化作用。这都表明渗透胁迫下水稻幼苗体内铁诱导的膜脂过氧化作用主要是由于其催化Fenton型Haber-Weiss反应形成OH所致。  相似文献   

17.
Previous studies have shown that a constitutively active isoform of Ras is able to produce superoxide radical (O2(-)). The present study investigate the mechanisms by which O2(-) radical mediates signals from Ras protein to the nucleus, leading to cellular responses such as apoptosis in Cr(VI)-stimulated cells. Two human prostate tumor cell lines, Ras(+), which overexpresses Ras, and Ras(-), which has a normal Ras level, were utilized. Compared to Ras(-) cells, Ras(+) cells exhibited higher susceptibility to apoptosis induced by Cr(VI). Catalase, sodium formate, and deferoxamine inhibited Cr(VI)-induced apoptosis. Similar differences were observed in both cellular DNA damage and the activation of p53 protein. The differences in Cr(VI)-induced cell responses in Ras(+) and Ras(-) cells were due to differences in the generation of free radicals between these two cells. ESR spin trapping measurements showed that Ras(+) cells generated more hydroxyl radical ((.)OH), O2(-) radical, and Cr(V) than Ras(-) cells following Cr(VI) stimulation. The generation of the reactive oxygen species (ROS) can be abolished by the addition of superoxide dismutase (SOD) or if the experiment were carried out in an argon atmosphere. Catalase inhibited spin adduct signals but was much less potent than SOD. The mechanism of ROS generation in Cr(VI)-stimulated Ras(+) cells involves the reduction of molecular oxygen to O2(-) radical by a flavoenzyme-containing NADPH oxidase complex as shown by oxygen consumption and diphenylene iodonium (DPI) inhibition. Results shown above support the following conclusions: (a) Ras protein mediates O2(-) radical generation through reduction of molecular oxygen by NADPH oxidase in Cr(VI)-stimulated cells. (b) The O2(-) radical and Cr(VI) produce other reactive species, including H2O2, OH radical, and Cr(V) through O2(-) dismutation and Haber-Weiss type of reactions. (c) Among these reactive species, (.)OH radical is responsible for the further transduction of signals from Ras to the nucleus, leading to various cell responses.  相似文献   

18.
A mechanism for the production of hydroxyl radical (*OH) during the oxidation of hydroquinones by laccase, the ligninolytic enzyme most widely distributed among white-rot fungi, has been demonstrated. Production of Fenton reagent (H2O2 and ferrous ion), leading to *OH formation, was found in reaction mixtures containing Pleurotus eryngii laccase, lignin-derived hydroquinones, and chelated ferric ion. The semiquinones produced by laccase reduced both ferric to ferrous ion and oxygen to superoxide anion radical (O2*-). Dismutation of the latter provided the H2O2 for *OH generation. Although O2*- could also contribute to ferric ion reduction, semiquinone radicals were the main agents accomplishing the reaction. Due to the low extent of semiquinone autoxidation, H2O2 was the limiting reagent in Fenton reaction. The addition of aryl alcohol oxidase and 4-methoxybenzyl alcohol (the natural H2O2-producing system of P. eryngii) to the laccase reaction greatly increased *OH generation, demonstrating the synergistic action of both enzymes in the process.  相似文献   

19.
We examined whether superoxide (O(2)(-)) is produced as a precursor of hydrogen peroxide (H(2)O(2)) in cultured thyroid cells using the cytochrome c method and the electron paramagnetic resonance (EPR) method. No O(2)(-) or its related radicals was detected in thyroid cells under the physiological condition. The presence of quinone, 2,3-dimethoxy-l-naphthoquinone (DMNQ), or 2-methyl-1, 4-naphthoquinone (menadione), in the medium produced O(2)(-) and hydroxyl radicals (OH*); the amount of H(2)O(2) generation was also increased. Incubation of follicles with DMNQ or menadione inhibited iodine organification (a step of thyroid hormone formation) and its catalytic enzyme, thyroid peroxidase (TPO). This inhibition should be caused by reactive oxygen species because the two quinones, particularly DMNQ, exert their effect through the generation of reactive oxygen species. It is speculated that the site-specific inactivation of TPO might have occurred at the heme-linked histidine residue of the TPO molecule, a critical amino acid for enzyme activity because OH* (vicious free radicals) can be formed at the iron-linked amino acid. TPO mRNA level and electrophoretic mobility of TPO were not inhibited by quinones. Our study suggests that thyroid H(2)O(2) is produced by divalent reduction of oxygen without O(2)(-) generation. If thyroid cells happen to be exposed to significant amount of reactive oxygen species, TPO and subsequent thyroid hormone formation are inhibited.  相似文献   

20.
ESR spectroscopic evidence is presented for the formation of vanadium(IV) in the reduction of vanadium(V) by three typical, NADPH-dependent, flavoenzymes: glutathione reductase, lipoyl dehydrogenase, and ferredoxin-NADP+ oxidoreductase. The vanadium(V)-reduction mechanism appears to be an enzymatic one-electron reduction process. Addition of superoxide dismutase (SOD) showed that the generation of vanadium(IV) does not involve the superoxide (O2-) radical significantly. Measurements under anaerobic atmosphere showed, however, that the enzymes-vanadium-NADPH mixture can cause the reduction of molecular oxygen to generate H2O2. The H2O2 and vanadium(IV) thus formed react to generate hydroxyl (.OH) radical. The .OH formation is inhibited strongly by catalase and to a lesser degree by SOD, but it is enhanced by exogenous H2O2, suggesting the occurrence of a Fenton-like reaction. The inhibition of vanadium(IV) formation by N-ethylmaleimide indicates that the SH group on the flavoenzyme's cystine residue plays an important role in the enzyme's vanadium(V) reductase function. These results thus reveal a new property of the above-mentioned, NADPH-dependent flavoenzymes--their function as vanadium(V) reductases, as well as that as generators of .OH radical in the vanadium(V) reduction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号