首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myofibroblasts from rat lung were cultivated. These cells in addition to beta- and gamma-cytoplasmic actins, expressed alpha-smooth muscle actin (alpha-SMA) and formed a system of "supermature" focal contacts, which were connected with thick stress-fibers expressing alpha-SMA and myosin II. Reduction of actin-myison contractility by inhibitors BDM and ML-7 lead to stress fiber reorganization, e.g., decrease in their thickness, a selective disappearance of alpha-SMA expression and myosin translocation from bundles to the cytoplasm. Using immunofluorescence, interference-reflection microscopy and morphometry, we have demonstrated that an inhibition of actin-myosin contractility also leads to dispersion of myofibroblastic focal contacts. Phase-contrast and DIC video-enhanced microscopy of live cells showed morphological reorganization at the leading edge after inhibitory treatment. Thus, actin-myosin contractility controls the structure of "supermature" focal contacts of myofibroblasts and alpha-SMA expression in stress fibers.  相似文献   

2.
The actin cytoskeleton plays an important role in the mediation of exocytosis and the determination of cell shape. Experimentally induced changes in cell shape have been shown to affect stimulated secretion in pancreatic acini. In this study, we have examined whether physiologic agonists induce changes in acinar cell shape to modulate secretion. Computer-enhanced video microscopy, immunofluorescence confocal microscopy, and quantitative Western blotting were used to study cell shape changes and cytoskeletal dynamics in rat pancreatic acini. Amylase assays were performed to study the effect of the actin-myosin cytoskeletal antagonists latrunculin A, BDM, and ML-9 on secretion. We found that pancreatic acini underwent a prominent and reversible shape change in response to the physiologic secretory agonist cholecystokinin. This was accompanied by an apical activation of myosin II as well as a basolateral redistribution of both actin and myosin II. Cytoskeletal antagonists inhibited this shape change and attenuated stimulated amylase secretion. Therefore, in addition to acting as a barrier at the apex, the actin-myosin cytoskeleton may also function to modulate cell shape to further regulate stimulated secretion.  相似文献   

3.
Protein kinase CK2 participates in a wide range of cellular events, including the regulation of cellular morphology and migration, and may be an important mediator of angiogenesis. We previously showed that in the retina, CK2 immunolocalizes mostly to vascular endothelium and astrocytes in association with the cytoskeleton. Additionally, CK2 inhibitors significantly reduced retinal neovascularization and stem cell recruitment in the mouse model of oxygen-induced proliferative retinopathy. We have also shown that CK2 and F-actin co-localized in actin stress fibers in microvascular endothelial cells, and that highly specific CK2 inhibitors caused cell rounding in astrocytes and microvascular endothelial cells, which was alleviated by serum that promotes spreading by Rho/Rho-kinase (RhoK) activation of myosin II. Therefore, we examined a possible role of CK2 in the regulation of actin-myosin II-based contractility. Treatment with CK2 inhibitors correlated with disassembly of actomyosin stress fibers and cell shape changes, including cytoplasmic retraction and process formation that were similar to those occurring during astrocyte stellation. Low doses of specific inhibitors of kinases (RhoK and MLCK) that phosphorylate myosin light chain (MLC) enhanced the effect of suboptimal CK2 inhibition on cell shape. Such striking stellation-like alteration was accompanied by decreased level of phospho-MLC, thus implying a CK2 role in regulation of actomyosin cytoskeleton. Our results suggest an important role of CK2 in the control of cell contractility and motility, which may account for suppressing effect of CK2 inhibition on retinal neovascularization. Together, our data implicate protein kinase CK2 for the first time in stellation-like morphological transformation.  相似文献   

4.
Actin stress fibers (SFs) enable cells to sense and respond to mechanical stimuli and affect adhesion, motility and apoptosis. We and others have demonstrated that cultured human aortic endothelial cells (HAECs) are internally stressed so that SFs are pre-extended beyond their unloaded lengths. The present study explores factors affecting SF pre-extension. In HAECs cultured overnight the baseline pre-extension was 1.10 and independent of the amount of cell shortening. Decreasing contractility with 30 mM BDM or 10 microM blebbistatin decreased pre-extension to 1.05 whereas increasing contractility with 2 nM calyculin A increased pre-extension to 1.26. Knockdown of alpha-actinin-1 with an interfering RNA increased pre-extension to 1.28. None of these affected the wavelength of the buckled SFs. Pre-extension was the same in unperturbed cells as in those in which the actin cytoskeleton was disrupted by both chemical and mechanical means and then allowed to reassemble. Finally, disrupting MTs or IFs did not affect pre-extension but increased the wavelength. Taken together, these results suggest that pre-extension of SFs is determined primarily by intrinsic factors, i.e. the level of actin-myosin interaction. This intrinsic control of pre-extension is sufficiently robust that pre-extension is the same even after the actin cytoskeleton has been disrupted and reorganized. Unlike pre-extension, the morphology of the compressed SFs is partially determined by MTs and IFs which appear to support the SFs along their lengths.  相似文献   

5.
Cell spreading in dense cultures of normal mouse embryo fibroblasts and of the two lines of mouse transformed fibroblasts was examined by electron microscopy. The mean number of cell layers in culture and cell population density per unit area of the substrate were detetmined; the mean area of the cell projection on the substratum was found from these data.Normal fibroblasts formed multilayefed sheet in dense culture. The cells in this sheet were well-spread. These cells formed thin lamellae (lamellar cytoplasm) over the surface of other cells and over the intercellular substance. The mean cell area in dense culture was not smaller than that of the cell spread on the substratum in sparse culture.Dense cultures of two transformed lines (M 22 and L) had differing morphologies: cultures of one line (M 22) were multilayered, those of the other line (L) were monolayered. Decreased spreading and almost complete (M 22) or complete (L) absence of lamellar cytoplasm were characteristic of both transformed lines. The mean area of the cell in dense cultures of both lines was several times smaller than that of their normal progenitors.It is concluded that similar reactions leading to the spreading accompanied by the formation of lamellar cytoplasm can be induced by the contact of fibroblast with various surfaces: that of the substratum in sparse culture, that of other cells and of intercellular structures in dense culture. Deficiency of these reactions characteristic for transformed fibroblasts may be responsible for abnormal morphology of their cultures.  相似文献   

6.
2,3-Butanedione 2-monoxime (BDM) is a general inhibitor of myosin ATPases of eukaryotic cells, and its effects on animal and yeast cells are well described. Using immunofluorescence and electron microscopy, we have analyzed the impacts of BDM on distributions of plant myosins, actin filaments (AFs), microtubules (MTs), and cortical endoplasmic reticulum (ER) elements in various cell types of maize root apices. Treatment of growing maize roots with BDM altered the typical distribution patterns of unconventional plant myosin VIII and of putative maize homologue(s) of myosin II. This pharmacological agent also induced a broad range of impacts on AFs and on cortical ER elements associated with plasmodesmata and pit fields. BDM-mediated effects on the actomyosin cytoskeleton were especially pronounced in cells of the root transition zone. Additionally, BDM elicited distinct reactions in the MT cytoskeleton; endoplasmic MTs vanished in all cells of the transition zone and cortical MTs assembled in increased amounts preferentially at plasmodesmata and pit-fields. Our data indicate that AFs and MTs interact together via BDM-sensitive plant myosins, which can be considered as putative integrators of the plant cytoskeleton. Morphometric analysis revealed that cell growth was prominently inhibited in the transition zone and the apical part, but not the central part, of the elongation region. Obviously, myosin-based contractility of the actin cytoskeleton is essential for the developmental progression of root cells through the transition zone.  相似文献   

7.
8.
Myosin is involved in postmitotic cell spreading   总被引:17,自引:4,他引:13       下载免费PDF全文
We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading. Listeria motility is not affected by this drug. Electron microscopy studies show that some actin filaments in spreading edges are part of actin bundles that are also found in long, thin, structures that are connected to spreading edges and substrate (retraction fibers), and that 90% of this actin is oriented with barbed ends in the direction of spreading. The remaining actin in spreading edges has a more random orientation and spatial arrangement. Myosin II is associated with actin polymer in spreading cell edges, but not retraction fibers. Myosin II is excluded from lamellipodia that protrude from the cell edge at the end of spreading. We suggest that spreading involves myosin, possibly myosin II.  相似文献   

9.
Nonmuscle myosin II has been shown to participate in organizing the actin cytoskeleton in polarized epithelial cells. Vectorial acid secretion in cultured parietal cells involves translocation of proton pumps from cytoplasmic vesicular membranes to the apical plasma membrane vacuole with coordinated lamellipodial dynamics at the basolateral membrane. Here we identify nonmuscle myosin II in rabbit gastric parietal cells. Western blots with isoform-specific antibodies indicate that myosin IIA is present in both cytosolic and particulate membrane fractions whereas the IIB isoform is associated only with particulate fractions. Immunofluorescent staining demonstrates that myosin IIA is diffusely located throughout the cytoplasm of resting parietal cells. However, after stimulation, myosin IIA is rapidly redistributed to lamellipodial extensions at the cell periphery; virtually all the cytoplasmic myosin IIA joins the newly formed basolateral membrane extensions. 2,3-Butanedione monoximine (BDM), a myosin-ATPase inhibitor, greatly diminishes the lamellipodial dynamics elicited by stimulation and retains the pattern of myosin IIA cytoplasmic staining. However, BDM had no apparent effect on the stimulation associated redistribution of H,K-ATPase from a cytoplasmic membrane compartment to apical membrane vacuoles. The myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-7) also did not alter the stimulation-associated recruitment of H,K-ATPase to apical membrane vacuoles, but unlike BDM it had relatively minor inhibitory effects on lamellipodial dynamics. We conclude that specific disruption of the basolateral actomyosin cytoskeleton has no demonstrable effect on recruitment of H,K-ATPase-rich vesicles into the apical secretory membrane. However, myosin II plays an important role in regulating lamellipodial dynamics and cortical actomyosin associated with parietal cell activation. acid secretion; cytoskeleton; ion channels and pumps  相似文献   

10.
Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.  相似文献   

11.
The mechanical behavior of the actin cytoskeleton has previously been investigated using both experimental and computational techniques. However, these investigations have not elucidated the role the cytoskeleton plays in the compression resistance of cells. The present study combines experimental compression techniques with active modeling of the cell’s actin cytoskeleton. A modified atomic force microscope is used to perform whole cell compression of osteoblasts. Compression tests are also performed on cells following the inhibition of the cell actin cytoskeleton using cytochalasin-D. An active bio-chemo-mechanical model is employed to predict the active remodeling of the actin cytoskeleton. The model incorporates the myosin driven contractility of stress fibers via a muscle-like constitutive law. The passive mechanical properties, in parallel with active stress fiber contractility parameters, are determined for osteoblasts. Simulations reveal that the computational framework is capable of predicting changes in cell morphology and increased resistance to cell compression due to the contractility of the actin cytoskeleton. It is demonstrated that osteoblasts are highly contractile and that significant changes to the cell and nucleus geometries occur when stress fiber contractility is removed.  相似文献   

12.
Voltage-sensitive dyes and imaging techniques have proved to be indispensable tools for use in in vitro electrophysiological studies. To avoid motion artifacts in optical recordings, electromechanical uncouplers such as 2,3-butanedione monoxime (BDM) are required. In this study, we sought to determine whether the voltage-sensitive dye RH421 had an effect on the contractility of heart muscle, either alone or in the presence of BDM. Ventricular contractility was studied in (i) isolated rat myocytes and (ii) Langendorff-perfused rat hearts under control conditions, and during perfusion with RH421 or RH421 + BDM. The following results were obtained. (i) The amplitude of cell shortening increased progressively from 6.24 +/- 0.64 to 9.95 +/- 1.02 microm during 15 min of superfusion with 5 microM RH421 (n = 11), and further increased to 12.54 +/- 0.97 microm during washout. In seven cells first perfused with 15 mM BDM and then with 15 mM BDM + 5 microM RH421, the amplitude of the cell shortening first decreased from 5.17 +/- 0.51 to 0.41 +/- 0.19 microm, then the amplitude increased to 2.63 +/- 0.25 microm. (ii) Left ventricular pressure (LVP) of the heart (n = 7) was reduced by 15 mM BDM from 60.7 +/- 2.5 to 2.8 +/- 0.5 mmHg (1 mmHg = 133.3 Pa). LVP increased to 12.8 +/- 1.1 mmHg during subsequent perfusion with 10 microM RH421 in the presence of BDM and did not change (LVP = 12.4 +/- 2.4 mmHg) during washout of the dye. Therefore, RH421 increased the contractility of rat hearts and isolated myocytes with and without BDM.  相似文献   

13.
Myosin was detected on Western blots of Micrasterias denticulata extracts by use of antibodies from different sources. Inhibitors with different targets of the actomyosin system, such as the myosin ATPase-blockers N-ethylmaleimide (NEM) and 2,3-butanedione monoxime (BDM), or the myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexhydro-1,4-diazapine (ML7), had similar effects on intracellular motility during cell development in the green alga Micrasterias, thus pointing towards a participation of myosin in these processes. The drugs markedly altered the mode of postmitotic nuclear migration, slowed down cytoplasmic streaming, changed cell pattern development and prevented normal chloroplast distribution and spreading into the growing semicell. In addition, an increase and dilatations in ER cisternae and marked morphological changes of the Golgi system were observed by transmission electron microscopy after exposure of growing cells to BDM.Neither BDM nor ML7 exhibited any effect on the distribution or arrangement of the cortical F-actin network nor on the F-actin basket around the nucleus, characteristic of untreated growing Micrasterias cells (J Cell Sci 107 (1994) 1929). This is particularly interesting since BDM caused disintegration of the microtubule system co-localized to the F-actin cage during normal nuclear migration. Together with the fact that other microtubules not connected to the F-actin system remained uninfluenced by BDM, this observation is evidence of an integrative function of myosin between the cytoskeleton elements.  相似文献   

14.
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton.  相似文献   

15.
Viable interspecies cytoplasmic-nuclear hybrid cells were constructed by fusion of karyoplasts prepared from the highly tumorigenic A9 mouse fibroblast cell line and cytoplasts prepared from the Detroit 532 normal human diploid cell strain. The identity of the hybrid cells was ascertained using a variety of morphological, immunological, and genetic criteria, including: nuclear pattern of staining with the fluorochrome Hoechst 33258, appearance of the actin-myosin containing cytoskeleton, presence of fibronectin, and resistance to azaguanine and diphtheria toxin. About 90% of the hybrid cells were viable, that is, capable of division. Changes in the morphology of the hybrid cells, apparently nuclear directed, were observed before cell division occurred. Using the techniques described here, large numbers of interspecies hybrid cells suitable for many types of biochemical analyses can be routinely produced.  相似文献   

16.
Calpain Regulates Actin Remodeling during Cell Spreading   总被引:10,自引:0,他引:10       下载免费PDF全文
Previous studies suggest that the Ca2+-dependent proteases, calpains, participate in remodeling of the actin cytoskeleton during wound healing and are active during cell migration. To directly test the role that calpains play in cell spreading, several NIH-3T3– derived clonal cell lines were isolated that overexpress the biological inhibitor of calpains, calpastatin. These cells stably overexpress calpastatin two- to eightfold relative to controls and differ from both parental and control cell lines in morphology, spreading, cytoskeletal structure, and biochemical characteristics. Morphologic characteristics of the mutant cells include failure to extend lamellipodia, as well as abnormal filopodia, extensions, and retractions. Whereas wild-type cells extend lamellae within 30 min after plating, all of the calpastatin-overexpressing cell lines fail to spread and assemble actin-rich processes. The cells genetically altered to overexpress calpastatin display decreased calpain activity as measured in situ or in vitro. The ERM protein ezrin, but not radixin or moesin, is markedly increased due to calpain inhibition. To confirm that inhibition of calpain activity is related to the defect in spreading, pharmacological inhibitors of calpain were also analyzed. The cell permeant inhibitors calpeptin and MDL 28, 170 cause immediate inhibition of spreading. Failure of the intimately related processes of filopodia formation and lamellar extension indicate that calpain is intimately involved in actin remodeling and cell spreading.  相似文献   

17.
The mechanism by which vascular smooth muscle (VSM) cells modulate their contractility in response to structural cues from extracellular matrix remains poorly understood. When pulmonary VSM cells were cultured on increasing densities of immobilized fibronectin (FN), cell spreading, myosin light chain (MLC) phosphorylation, cytoskeletal prestress (isometric tension in the cell before vasoagonist stimulation), and the active contractile response to the vasoconstrictor endothelin-1 all increased in parallel. In contrast, MLC phosphorylation did not increase when suspended cells were allowed to bind FN-coated microbeads (4.5-microm diameter) or cultured on micrometer-sized (30 x 30 microm) FN islands surrounded by nonadhesive regions that support integrin binding but prevent cell spreading. Cell spreading and MLC phosphorylation also both decreased in parallel when the mechanical compliance of flexible FN substrates was raised. MLC phosphorylation was inhibited independently of cell shape when cytoskeletal prestress was dissipated using a myosin ATPase inhibitor in fully spread cells, whereas it increased to maximal levels when microtubules were disrupted using nocodazole in cells adherent to FN but not in suspended cells. These data demonstrate that changes in cell-extracellular matrix (ECM) interactions modulate smooth muscle cell contractility at the level of biochemical signal transduction and suggest that the mechanism underlying this regulation may involve physical interplay between ECM and the cytoskeleton, such that cell spreading and generation of cytoskeletal tension feed back to promote MLC phosphorylation and further increase tension generation.  相似文献   

18.
The secretion of lung surfactant requires the movement of lamellar bodies to the plasma membrane through cytoskeletal barrier at the cell cortex. We hypothesized that the cortical cytoskeleton undergoes a transient disassembly/reassembly in the stimulated type II cells, therefore allowing lamellar bodies access to the plasma membrane. Stabilization of cytoskeleton with Jasplakinolinde (JAS), a cell permeable actin microfilament stabilizer, caused a dose-dependent inhibition of lung surfactant secretion stimulated by terbutaline. This inhibition was also observed in ATP-, phorbol 12-myristate 13-acetate (PMA)- or Ca(2+) ionophore A23187-stimulated surfactant secretion. Stimulation of type II cells with terbutaline exhibited a transient disassembly of filamentous actin (F-actin) as determined by staining with Oregon Green 488 Phalloidin. The protein kinase A inhibitor, H89, abolished the terbutaline-induced F-actin disassembly. Western blot analysis using anti-actin and anti-annexin II antibodies showed a transient increase of G-actin and annexin II in the Triton X-100 soluble fraction of terbutaline-stimulated type II cells. Furthermore, introduction of exogenous annexin II tetramer (AIIt) into permeabilized type II cells caused a disruption in the cortical actin. Treatment of type II cells with N-ethylmaleimide (NEM) resulted in a disruption of the cortical actin. NEM also inhibited annexin II's abilities to bundle F-actin. The results suggest that cytoskeleton undergoes reorganization in the stimulated type II cells, and annexin II tetramer plays a role in this process.  相似文献   

19.
Dynamics of alterations of cell surface topography during TNF-induced apoptosis of HeLa cells was examined by phase-contrast videomicroscopy and immunomorphological analysis. The final stage of apoptosis accompanied by cell rounding and general blebbing of the cell surface became after 4-6 h of incubation but much earlier, after 1.5-3 h, essentially flattened lamellipodia at the active edges transformed into the small blebs that were continuously extended and retracted during the next 1-2 h. This phenomenon was called "marginal blebbing". It took place before the cytochrome c release from mitochondria to cytosol. Marginal blebbing was inhibited by drugs that depolymerized actin microfilaments (cytochalasin, latrunculin) or decreased Rho-kinase-dependent contractility of actin-myosin cortex (H7, HA-1077, Y27632). A pancaspase inhibitor, zVAD-fmk, completely prevented marginal and general blebbing, and TNF-induced apoptosis. DEVD-fmk, a specific inhibitor of caspase-3, inhibited both marginal and general blebbing but not cell rounding and death. Thus, marginal blebbing is an early microfilament-dependent apoptotic event. It is suggested that it is initiated by minimal activation of caspase-3 and the following local Rho-kinase-dependent stimulation of actin-myosin cortex contractility. Localization of marginal blebs at the active edge may be associated with special organization of cortex in that zone.  相似文献   

20.
The role of the cytoskeleton in morphological normalization of transformed cells was studied. Mouse cells of the L197/6 clonal line were fused by polyethylene glycol and replated. The multinuclear cells were more spread than control ones: the ratio of the cell-occupied area to the number of the nuclei increased 2-3 times as a result of multinucleation. Instead of the spindle-like morphology typical for control cells they became star-like with larger lamellar regions located between radially oriented cell processes. According to the immunofluorescent data these processes contained thick bundles of microtubules and intermediate filaments. Destruction of these bundles with colcemide led to a decrease in the area occupied by multinuclear cells but did not change significantly the area occupied by control cells. The role of microtubules and intermediate filaments in cell spreading is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号