首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A rapid regeneration system was used for studies ofAgrobacterium-mediated transformation inPisum sativum L. Cotyledonary node explants were inoculated withAgrobacterium tumefaciens strains containing binary vectors carrying genes for nopaline synthase (NOS),β-glucuronidase (GUS), and neomycin phosphotransferase (NPTII) and placed on selection medium containing either 75 or 150 mg/liter kanamycin. A GUS encoding gene (uidA) containing an intron was used to monitor gene expression from 6 to 21 days postinoculation. GUS activity could be observed 6 days after inoculation in the area of the explant in which regeneration-occurred. Regenerating tissue containing transformed cells was observed in explants on selection medium 21 days postinoculation. Using this system, a single transgenic plant was obtained. Progeny of this plant, which contained two T-DNA inserts, demonstrated segregation for the inserts and for expression of the NOS gene in the selfed R1 progeny. NPTII activity was observed in the R2 generation, indicating inheritance and expression of the foreign DNA over at least two generations. Attempts to repeat this procedure were unsuccessful.  相似文献   

2.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

3.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

4.
Genetic transformation of selected mature cork oak (Quercus suber L.) trees   总被引:1,自引:0,他引:1  
A transformation system for selected mature cork oak (Quercus suber L.) trees using Agrobacterium tumefaciens has been established. Embryos obtained from recurrent proliferating embryogenic masses were inoculated with A. tumefaciens strains EHA105, LBA4404 or AGL1 harbouring the plasmid pBINUbiGUSint [carrying the neomycin phosphotransferase II (nptII) and -glucuronidase (uidA) genes]. The highest transformation efficiency (4%) was obtained when freshly isolated explants were inoculated with A. tumefaciens strain AGL1. Evidence of stable transgene integration was obtained by PCR for the nptII and uidA genes, Southern blotting and expression of the uidA gene. The transgenic embryos were germinated and successfully transferred to soil.Abbreviations BA N6-Benzyladenine - GUS -Glucuronidase - MSSH Expression-proliferation medium - NAA -Naphthaleneacetic acid - nptII Neomycin phosphotransferase gene - uidA -Glucuronidase gene  相似文献   

5.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

6.
Establishment of an efficient protocol for regeneration and genetic transformation is required in banana for the incorporation of useful traits. Therefore an efficient method has been developed for somatic embryogenesis, plant regeneration and transformation of Cavendish banana cultivar Robusta (AAA). Embryogenic cell suspension culture (ECS) was established using immature male flowers. Percentage appearance of embryogenic callus and distinct globular embryos was 10.3 and 11.1, respectively. ECS obtained was cocultivated under different cocultivation conditions with Agrobacterium tumefaciens strain EHA105 harboring pCAMBIA 1301 plant expression vector. Up to 30 transgenic plants/50 mg settled cell volume (SCV) was obtained with cocultivation in semisolid medium whereas no transgenics could be obtained with parallel experiments carried out in liquid medium. Histochemical GUS assay in different tissues of putatively transformed plants demonstrated expression of uidA gene. Among the putatively transformed plants obtained, a set of 4 were confirmed by PCR analysis and stable integration of the transgene by Southern analysis. GUS specific activity measured by a MUG (4-methylumbelliferyl-β-d-glucuronide) based flourometric assay revealed increase in transient GUS expression in semisolid as well as liquid cocultivation with centrifugation. This is the first report showing somatic embryogenesis and Agrobacterium tumefaciens mediated transformation using embryogenic cell suspension cultures in an important Cavendish banana cultivar Robusta. The present protocol will make possible agronomic improvement of this important commercially grown cultivar by introduction of disease resistance characteristics and antisense-mediated delayed fruit ripening strategies. Further, it will also assist in functional characterization of new gene or promoter elements isolated from this or other cultivars of banana.  相似文献   

7.
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.  相似文献   

8.
A protocol for Agrobacterium tumefaciens-mediated genetic transformation of Rhipsalidopsis cv. CB5 was developed. Calluses derived from phylloclade explants and sub-cultured onto fresh callus induction medium over a period of 9–12 months were co-cultivated with A. tumefaciens LBA4404. Plasmid constructs carrying the nptII gene, as a selectable marker, and the reporter uidA gene were used. Transformed Rhipsalidopsis calluses with a vigorous growth phenotype were obtained by extended culture on media containing 600 mg l−1 kanamycin. After 9 months of a stringent selection pressure, the removal of kanamycin from the final medium together with the culture of the transformed calluses under nutritional stress led to the formation of several transgenic adventitious shoots. Transformation was confirmed by GUS staining (for uidA gene), ELISA analysis and Southern blot hybridization (for the nptII gene). With this approach, a transformation efficiency of 22.7% was achieved. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for this cactus species.  相似文献   

9.
We have developed a system to produce transgenic plants in tea (Camelia sinensis [L.] O. Kuntze) viaAgrobacterium tumefaciens-mediated transformation of embryogenic calli. Cotyledon-derived embryogenic callus cultures were cocultivated with anA. tumefaciens strain (AGL 1) harboring a binary vector carrying the hygromycin phosphotransferase (hpt II), glucuronidase (uid A), and green fluorescent protein (GFP) genes in the tDNA region. Following cocultivation, embryogenic calli were cultured in medium containing 500 mg/L carbenicillin for 1 wk and cultured on an antibiotic selection medium containing 75 mg/L hygromycin for 8–10 wk. Hygromycin-resistant somatic embryos were selected. The highest production efficiency of hygromycin-resistant calli occurred with cocultivation for 6–7 d in the presence of 400 μM acetosyringone (AS). Hygromycin-resistant somatic embryos developed into complete plantlets in regeneration medium containing half-strength Murashige and Skoog (MS) salts with 1 mg/L benzyl amino purine (BAP) and 9 mg/L giberellic acid (GA3). Transformants were subjected to GFP expression analysis, β-glucuronidase (GUS) histochemical assay, PCR analysis, and Southern hybridization to confirm gene integration.  相似文献   

10.
A method for Agrobacterium tumefaciens-mediated transformation of Pinus radiata cotyledon explants was developed using commercially available open-pollinated seed. Pinus radiata is the most widely planted commercial conifer species in the Southern Hemisphere. Reports on transformation of this species have relied on particle bombardment of embryogenic callus derived from immature embryos. The main drawback to the method is the small number of genotypes that are amenable to transformation and regeneration. Since more than 80% of genotypes of radiata pine can be regenerated using cotyledons from mature seed, cotyledon explants were cocultivated with A. tumefaciens strain AGL1 containing a plasmid coding for the neomycin phosphotransferase II (nptII) gene and the -glucuronidase (GUS) gene (uidA). Transformed shoots were selected using either geneticin or kanamycin. Critical factors for successful transformation were survival of the cotyledons after cocultivation and selection parameters. Of the 105 putative transformants that were recovered from selection media, 70% were positive for integration of the nptII gene when analysed by PCR. GUS histochemical assay for uidA expression was unreliable because of reaction inhibition by unidentified compounds in the pine needles. Further, only 4 of the 26 independent transformants characterised by PCR and Southern analysis contained an intact copy of both genes. The remaining 22 transformants appeared to have a truncated or rearranged copy of the T-DNA. It is possible that the truncation/rearrangements are due to the Cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the T-DNA junction sites and sequencing of the introduced DNA will help elucidate the nature of T-DNA insertion so that genetic modification of radiata pine can be targeted effectively.Communicated by P. Debergh  相似文献   

11.
Summary An efficient regeneration and transformation system was developed for two elite aspen hybrid clones (Populus canescens × P. grandidentada and P. tremuloides × P. davidiana). Callus was induced from in vitro leaf explants on modified Murashige and Skoog medium (MSA) and woody plant medium (WPM) containing four different combinations of cytokinins and auxins. Callus tissues regenerated into shoots on WPM medium supplemented with 2.0 mgl−1 (9.12 μM) zeatin or 0.01 mgl−1 (0.045 μM) thidiazuron. P. canescens × P. grandidentata exhibited the higher callus and shoot production. In vitro leaf explants from the two hybrid clones were cocultivated with Agrobacterium tumefaciens strain EHA105 harboring the binary Ti plasmid pBI121 carrying the uidA gene encoding for β-glucuronidase (GUS) and the npt II gene encoding for neomycin phosphotransferase II. Transformation was confirmed by GUS assays, polymerase chain reaction, and Southern blot analyses. Agrobacterium concentration, acetosyringone, and pH of the cocultivation medium were evaluated for enhancing transformation efficiency with the clone P. canescens × P. grandidentata.  相似文献   

12.
Summary Mature embryo axes of the Ohio buckeye were germinated on a medium containing 1 mg gibberellic acid (GA) per 1. Three wk following germination, stem, petiole, and leaf blade tissues were excised and placed on media containing either 1 mg (4.5 μM) 2,4-dichlorophenoxy acetic acid (2,4-D) per 1, 1 mg (4.7 μM) kinetin per 1, 1 mg of both 2,4-D (4.5 μM) and kinetin (4.7 μM per 1, or 2 mg of both 2,4-D (9.1 μM) and kinetin (9.3 μM) per 1. Embryogenic tissue was formed only from stem segments after 2–3 mo. of culture on media containing both 2,4-D and kinetin. Embryogenic tissue could be either maintained on solid medium for proliferation of embryogenic callus or placed in liquid medium for proliferation of embryogenic suspension cultures. For transformation of suspension cultures, tissues were inoculated with Agrobacterium EHA105 containing the binary plasmid Vec035, briefly sonicated, and cultured in the presence of 100 μM acetosyringone for 2 d. To eliminate Agrobacterium, tissues were washed and placed in liquid proliferation medium containing either 500 mg Cefotaxime per 1 or 400 mg TimentinŖ per 1. Selection on 20 mg hygromycin per 1 was initiated 2 wk after inoculation, and after an additional 10 wk, hygromycin-resistant tissue was isolated and separately cultured. Although some hygromycinresistant clones were recovered with no sonication treatment, four to five times more clones were obtained following sonication. Putative transformed clones were confirmed to be transgenic via both histochemical β-glucuronidase (GUS) assay and southern hybridization analyses. Development of transgenic embryos occurred on a growth regulator-free medium containing 3% sucrose. After 2 mo. of embryo development, the embryos were transferred to fresh medium for germination.  相似文献   

13.
14.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

15.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

16.
Summary Callus induction was observed from hypocotyl, root, and cotyledonary leaf segments, grown on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KN). Maximum callusing (100%) was obtained from root and cotyledonary leaf segments grown on MS medium supplemented with a combination of 2 mg l−1 (9.1 μM) 2,4-D and 0.2 mg l−1 (0.9 μM) KN. The calluses, when subcultured in the same medium, showed profuse callusing. However, these calluses remained recalcitrant to regenerate regardless of the quality and combinations of plant growth regulators in the nutrient pool. When hypocotyl segments were used as explants, callus induction was noticed in 91% of cultures which showed shoot regeneration on MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 KN. These shoots were transferred to fresh medium containing various concentrations and combinations of 6-benzyladenine (BA) and N6-(2-isopentenyl)adenosine (2-iP). Maximum shoot multiplication was observed after 60 d of the second subculture on MS medium containing 2 mg l−1 (8.9 μM) BA. These shoots were rooted best (87%) on MS medium containing 2 mg l−1 (9.9 μM) indole-3-butyric acid (IBA). The plantlets were transferred to the field after acclimatization and showed 60% survival.  相似文献   

17.
The US Department of Energy recently released a 6.8X draft of the genome sequence for Nisqually-1, a genotype of black cottonwood (Populus trichocarpa). To improve its utility for functional genomics research, having an efficient means for transformation and regeneration is necessary. To examine several parameters known to affect the transformation rate, we cocultivated leaf disc and stem explants with a strain ofAgrobacterium tumefaciens harboring a binary plasmid vector containing genes for both neomycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Shoot regeneration from stem explants was observed in the presence of kanamycin when thidiazuron was incorporated in the selection medium. Transformation efficiency was influenced by the level of thidiazuron to which explants were exposed during the early stages of shoot induction. Histochemical assays revealed expression of theGUS gene in leaf, stem, and root tissues of transgenic plants. Polymerase chain reaction confirmed the presence of both selectable marker and reporter genes in all lines that stained positive for β-glucuronidase activity. By use of our modified protocol, transgenic plants were recovered within 6 mo at an efficiency of 6%, adequate to produce a large number of transgenic events with modest effort.  相似文献   

18.
An improved protocol for efficient Agrobacterium-mediated transformation of grapevine (Vitis sp.) was developed through modification of cocultivation and subsequent washing procedures. It was determined that Agrobacterium-infected somatic embryos (SE) cocultivated on filter paper exhibited less browning and significantly higher transient GFP and GUS expression than those cultured on agar-solidified medium. Furthermore, such SE, when subjected to a prolonged washing period in liquid medium containing cefotaxime and carbenicillin, followed by another wash in similar medium with kanamycin added, exhibited significantly higher rates of stable transformation compared to previously-described procedures. Transgenic plant recovery was increased 3.5–6 Xs by careful excision of leafy cotyledons from SE that had been induced to germinate on MS medium containing 1 μM of BA. Southern blot analysis revealed the low copy number integration of transgenes in transgenic plants recovered using the improved protocol. These improved cocultivation and plant recovery procedures have been demonstrated to facilitate production of large populations of transgenic plants from V. vinifera ‘Merlot’, ‘Shiraz’ and ‘Thompson Seedless’ as well as Vitis hybrid ‘Seyval Blanc’.  相似文献   

19.
Summary A very rapid and efficient regeneration method of Vigna mungo L. has been established using liquid culture. A highly regenerable explant, viz., young multiple shoots obtained by germinating the seeds in 2 mgl−1 (8.9μM) N6-benzyladenine-supplemented Murashige and Skoog (MS) medium, was used as a source of tissue to initiate the liquid culture. The liquid medium consisted of half-strength B5 or MS salts supplemented with MS organics, α-naphthaleneacetic acid (0.1 mgl−1, 0.54μM) and N6-benzyladenine (0.5mgl−1, 2.2μM). Transferring the growing tissues to fresh medium every third day resulted in ca. 142% increase in the number of shoot buds produced after 24d. Shoot buds elongated on one-third-strength MS (MS1/3) semisolid medium and plantlets were obtained by transferring the shoots onto MS1/3 semisolid medium supplemented with indolebutyric acid (1 mgl−1, 4.9 μM).  相似文献   

20.
In this study, the effects of inositol addition on expression of the MAL gene encoding maltase and phosphatidylinositol (PI) biosynthesis in Schizosaccharomyces pombe (a naturally inositol-requiring strain) were examined. We found that specific maltase activity was at its maximum when the concentration of added inositol reached 6 μg ml−1 in a synthetic medium containing 2.0% (w/v) glucose. When the concentration of added inositol was 1 μg ml−1 in the medium, repression of MAL gene expression occurred at glucose concentration higher than 0.2% (w/v). However, when S. pombe was cultured in the synthetic medium containing 6 μg ml−1, repression of maltase gene expression occurred only at initial glucose concentration above 1.0% (w/v). More mRNA encoding maltase was detected in the cells grown in the medium with 6 μg ml−1 inositol than in those grown in the same medium with 1 μg ml−1 inositol. These results demonstrate that higher inositol concentrations in the synthetic medium could derepress MAL gene expression in S. pombe. PI content of the yeast cells grown in the synthetic medium with 6 μg ml−1 of inositol was higher than that of the yeast cells grown in the same medium with 1 μg ml−1 of inositol. This means that PI may be involved in the derepression of MAL gene expression in S. pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号