首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S J Cooper 《Life sciences》1983,32(10):1043-1051
Benzodiazepines reliably produce overconsumption of food and fluids. Opiate antagonists, naloxone and naltrexone, block the benzodiazepine-induced hyperphagia and hyperdipsia at low doses. Hence, activation of endogenous opioid mechanisms may be closely involved in the benzodiazepine facilitatory effects on ingestional behavior. Evidence is reviewed that opiate antagonists diminish feeding and drinking responses, and may enhance satiety processes in feeding and drinking, in addition to selectively diminishing the palatability of attractive foods and fluids. It is proposed that a single mechanism of action of the opiate antagonists would be sufficient to account for both effects on feeding and drinking. Biochemical data confirm that acute benzodiazepine treatment in vivo is associated with a naloxone-reversible release of striatal enkephalin. It is possible therefore that there is a close association between the behavioral and biochemical data, which both show that acute benzodiazepine effects are reversed by opiate antagonists. The implied relationship between benzodiazepine and endogenous opioid mechanisms may be relevant to the question of concurrent opiate-benzodiazepine abuse.  相似文献   

2.
Opioid receptor agonists and Ca2+ modulation in human B cell lines.   总被引:4,自引:0,他引:4  
Opiates and opioid peptides have been shown to modulate lymphocyte functions; however, little attention has been given to the type of receptors or receptor signaling mechanisms that are involved. Receptor-mediated signaling via ionized free Ca2+ is an event thought to be important in the triggering of lymphocyte activities. We report use of the calcium indicator dye, indo-1, and flow cytometry to identify B lymphocyte calcium responses to physiologic concentrations of opioid peptides. The human B cell lines Nalm 6 and JY responded to the naturally occurring opioid pentapeptide methionine-enkephalin or other opiate receptor agonists with a rapid, dose-dependent rise in free cytoplasmic Ca2+. This opioid peptide effect on Ca2+ modulation was inhibited by the opiate receptor antagonist naloxone. The synthetic enkephalin analogue DAMGO with specificity for mu-type opiate receptors and the synthetic opiate receptor agonists U50,488H and U69,593 with selectivity for kappa-type sites also stimulated calcium responses when applied to the B cell lines. These studies provide evidence that human B cell lines express functional opiate receptors of the mu- and kappa-types and suggest that such receptors, coupled with Ca2+ modulation, are instrumental in the B cell response to opiates and endogenous opioid neuropeptides.  相似文献   

3.
Types of opioid receptors: relation to antinociception   总被引:5,自引:0,他引:5  
The endogenous opioid peptides are derived from three large precursors. Pro-opiocortin and proenkephalin yield [Met]enkephalin, carboxy-extended [Met]enkephalins and [Leu]enkephalin. The fragments of prodynorphin are all carboxy-extended [Leu]enkephalins. Three approaches are of importance for an analysis of the physiological functions of the different endogenous opioid peptides. First, since these peptides interact with more than one of the mu-, delta- and kappa-binding sites and thus with their receptors, it is necessary to synthesize peptides or non-peptides, which bind to only one of the sites. As far as narcotic analgesics are concerned, morphine fulfils these conditions since it interacts almost exclusively with the mu-receptor. Secondly, antagonists are required that are selective for only one of the opioid receptors, even when used in high concentrations. Finally, it is important to find circumscribed areas in the nervous system that possess only one type of opioid receptor. It is now known that in the rabbit cerebellum the opioid receptors are almost exclusively of the mu-type whereas in the guinea-pig cerebellum they are almost exclusively of the kappa-type.  相似文献   

4.
Peripheral administration of butorphanol tartrate markedly enhanced feeding from 0800 to 1400 hours when compared with vehicle controls. Butorphanol tartrate feeding was not antagonized by doses of naloxone as high as 10 mg/kg. These data support the concept that the kappa or sigma opiate receptors are involved in feeding behavior.It is well recognized that the endogenous opiates play a role in the central regulation of appetite (1, 2, 3, 4). Numerous studies have shown that The endogenous opioid peptides and morphine can initiate feeding under various conditions (5–12) whereas the opiate antagonist, naloxine can reduce food consumption (13–20). Recently, the endogenous opiod peptide, dynorphin, has been reported to enhance food intake (12–25).Much evidence has been accumulated indicating that a number of opiate receptors are present in the brain, each one having a high affinity for a specific endogenous opioid peptide (26, 27). Both the cyclazocine related compounds (28) and the feeding enhancer, dynorphin (29–32), have been reported to be specific kappa receptor agonists. In the present study, we report on the effect of the morphinan congener, butorphanol tartrate (33), on ingestive behaviour.  相似文献   

5.
There is accumulating evidence that opioid systems are involved in the regulation of fundamental behavioral and physiological processes in invertebrates. Feeding is a basic physiological function that is essential for maintaining homeostasis. Results of studies examining the feeding responses of molluscs and arthropods treated with various opiate agonists and antagonists indicate that delta, kappa, mu, and possibly sigma opioid systems differentially and selectively mediate the components of their natural feeding behavior. Moreover, it appears that at an early evolutionary stage the mu and kappa systems have developed to selectively affect the components of feeding behavior associated with the acquisition and ingestion of food. In addition, evidence suggests that neuropeptides that have been proposed as possible endogenous antagonists of opioid-mediated feeding in mammals may also be involved in the control of feeding in invertebrates. This indicates that there may be an interplay of opioid agonists and antagonists in the regulation of feeding and satiation in invertebrates analogous to that proposed for vertebrates. Moreover, these findings indicate that opioid influences on feeding have been conserved through evolution.  相似文献   

6.
Four experiments were performed to evaluate a possible opioid involvement in the regulation of sexual behavior (amplectic clasping of a female) in intact adult male rough-skinned newts (Taricha granulosa) during the breeding season. It was found that an ip injection of bremazocine, a kappa-receptor opiate agonist, can markedly reduce sexual activity and that an ip injection of naloxone can reverse this inhibition in a dose-dependent fashion. In contrast, in male newts that were sexually inactive before treatment, injections of naloxone failed to induce sexual behavior, suggesting that opioid mechanisms do not normally exert a tonic inhibition of amphibian sexual behavior. In addition, an injection of ethylketocyclazocine (another kappa-receptor agonist), but not morphine (a mu-receptor agonist) suppressed sexual behaviors of male newts. These results indicate that opioid mechanisms that include kappa-type opioid receptors may contribute to the regulation of sexual behavior in nonmammalian vertebrates.  相似文献   

7.
Opiate-sensitive feeding behavior has now been demonstrated in a number of species. We sought information on which opioid receptors might be involved in the observed feeding behaviors. Guinea pigs are known to have higher concentrations of the opioid kappa receptor than any other laboratory animal, so we compared the feeding suppressive potency of the general opiate antagonist, diprenorphine to that of the relatively more mu-specific antagonist, naloxone in that species. We found that diprenorphine was over twenty times more effective than naloxone in suppressing feeding in guinea pigs, suggesting the importance of receptors other than mu in feeding initiation in the guinea pig. Confirmatory evidence for the role of kappa receptors was sought, but not found, in comparisons of the effectiveness of different types of opiate agonists in promoting feeding in these animals. These agonists suppressed, rather than stimulated feeding. We conclude that no feeding stimulatory effects of opiates can be demonstrated in guinea pigs. This observation may indicate that opioids play little role in the natural regulation of feeding in this species or that opioids result in prolonged sedation during which the animals fail to eat. The greater feeding suppressive potency of diprenorphine, a general opiate antagonist, versus naloxone, a mu-preferential antagonist, indicates that to whatever extent opiates are involved in guinea pig feeding, the opiate effect is probably not a mu receptor effect.  相似文献   

8.
Endogenous opioids and feeding behavior: a 30-year historical perspective   总被引:3,自引:0,他引:3  
Bodnar RJ 《Peptides》2004,25(4):697-725
This invited review, based on the receipt of the Third Gayle A. Olson and Richard D. Olson Prize for the publication of the outstanding behavioral article published in the journal Peptides in 2002, examines the 30-year historical perspective of the role of the endogenous opioid system in feeding behavior. The review focuses on the advances that this field has made over the past 30 years as a result of the timely discoveries that were made concerning this important neuropeptide system, and how these discoveries were quickly applied to the analysis of feeding behavior and attendant homeostatic processes. The discoveries of the opioid receptors and opioid peptides, and the establishment of their relevance to feeding behavior were pivotal in studies performed in the 1970s. The 1980s were characterized by the establishment of opioid receptor subtype agonists and antagonists and their relevance to the modulation of feeding behavior as well as by the use of general opioid antagonists in demonstrating the wide array of ingestive situations and paradigms involving the endogenous opioid system. The more recent work from the 1990s to the present, utilizes the advantages created by the cloning of the opioid receptor genes, the development of knockout and knockdown techniques, the systematic utilization of a systems neuroscience approach, and establishment of the reciprocity of how manipulations of opioid peptides and receptors affect feeding behavior with how feeding states affect levels of opioid peptides and receptors. The role of G-protein effector systems in opioid-mediated feeding responses, which was the subject of the prize-winning article, is then reviewed.  相似文献   

9.
Opioid ligands were investigated for their effect on hCG release from trophoblast tissue obtained from term human placenta. Data obtained indicate that opiate agonists stimulate in vitro basal hCG release from trophoblast tissue. The potency of these opioid agonists correspond to their kappa receptor selectivity, i.e., the greater the selectivity the lower is the effective concentration causing maximum stimulation. Opioid antagonists inhibit the release of hCG due to their reversal of the stimulation caused by endogenous opioid peptides. Potency of the antagonists correspond also to their kappa receptor selectivity. Antagonists reverse the stimulation of hCG release caused by agonists indicating that the ligand's action is mediated by the placental kappa opioid receptors. The bell shaped response curves for agonists and antagonists suggest that opioids play a role in the regulation of hCG release from trophoblast tissue, but other mechanism(s) may also exist.  相似文献   

10.
Recent studies have led to a greater understanding of the behavioral, cellular, and molecular mechanisms underlying opiate tolerance and physical dependence. Behavioral studies have demonstrated that both direct pharmacological effects and the learning of interactions between drug effects and environmental cues are important in these phenomena. Behavioral studies have also revealed that N-methyl-D-aspartate receptors may play a role in their development (or acquisition). Although in early cellular studies no consistent role was found for opioid receptors or endogenous opioid peptides in opiate tolerance and dependence, recent experiments suggest that beta-endorphin, enkephalin, and dynorphin neurons may indeed have a role. Finally, studies at the molecular level suggest that a functional decoupling of opioid receptors from GTP-binding proteins (G proteins) may be important. In this review, we discuss these disparate findings and present a synthesis that shows how they might together contribute to the phenomena of opiate tolerance and physical dependence.  相似文献   

11.
Pure narcotic antagonists such as naloxone and naltrexone have consistently been shown to attenuate drinking in the rat after periods of water deprivation. One objective of this study was to extend observations to a primate species, the squirrel monkey. Whereas naloxone and naltrexone have a greater relative affinity for opiate receptors preferentially binding morphine and other opiate alkaloids than for those with high affinity for the endogenous opioid peptides, diprenorphine, another pure opiate antagonist, binds with equally high affinity to both receptor subtypes. Therefore, a second objective was to determine the actions of diprenorphine on drinking in water-deprived rats and squirrel monkeys and to compare the effects of this drug to those of naloxone and naltrexone. All three narcotic antagonists suppressed water consumption of monkeys and rats deprived of water for 18 and 24 hr, respectively. Diprenorphine was the most potent compound tested in both species, producing significant reductions in water consumption of monkeys and rats at systemic doses as low as 0.01 and 0.1 mg/kg respectively. Moreover, diprenorphine was the longest acting of the three drugs in the monkey. These results demonstrate that the narcotic antagonists attenuate drinking in primates as well as in rodents and support the hypothesis that these drugs reduce water intake by interrupting the activity of endogenous opioid pathways mediating drinking behavior.  相似文献   

12.
Opioid peptides have been revealed in representatives of practically all large taxonomic groups of invertebrates, and the opiate receptors are found even in unicellulars. The opioid system seems to belong to the evolutionary ancient signal systems. The comparative data indicate that the most conservative and ancient function of opioids is control of the adequate level of protective reactions. In the infusorian Stentor the opiate ligands suppress a contractile response to mechanical stimulation, i.e., the protective behavior. In all studies multicellular invertebrates, agonists also suppress protective behavior, whereas antagonists produce opposite effects. This initially signal meaning of opioids might have become a basis for divergent development of their functions in evolution. Already in higher invertebrates, molluscs and arthropods, many functions of opioids, for example, stress-induced analgesia, regulation of feeding and mating behavior, of social aggression, are similar to those in vertebrates. It is suggested that the main events in formation of functions of the endogenous opioid system have occurred in the lower invertebrates that have remained so far the least studied.  相似文献   

13.
On the specificity of naloxone as an opiate antagonist.   总被引:17,自引:0,他引:17  
J Sawynok  C Pinsky  F S LaBella 《Life sciences》1979,25(19):1621-1632
Since the discovery of endogenous opioid peptides in brain (68,69,97,113, 128) and the pituitary gland (26,81,105,125) there has been considerable interest in their possible roles in a variety of physiological and pharmacological processes. Many studies have used antagonism by naloxone as a criterion for implicating endogenous opiates in a process, assuming that naloxene has no pharmacological actions other than those related to blockade of opiate receptors. The doses of naloxene used are often higher than those required to antagonize the analgesic and other effects of morphine. However, multiple forms of opiate receptors are present in nervous tissue and higher concentrations of naloxene are required to antagonize effects mediated by some of these receptors (83). Although the earlier literature supports the assumption that the effects of naloxene are due to the blockade of opiate receptors (87), there are an increasing number of reports which indicate that naloxene may have pharmacological actions unrelated to opiate receptor blockade. The subsequent review serves to emphasize that antagonism by naloxene is a necessary but not sufficient criterion for invoking the mediation of a response by an endogenous opiate (61). Additional lines of evidence which serve to strengthen the conclusion that endogenous opiates mediate a process will be considered.  相似文献   

14.
Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.  相似文献   

15.
K Ramabadran  J J Jacob 《Life sciences》1979,24(21):1959-1969
It is known that various opiate antagonists enhance stereospecifically reactions to superficial nociceptive stimuli (e.g. in the hot plate test) suggesting the involvement of endogenous ligands in these reactions. In mice and rats the writhing responses to deep nociceptive stimuli (intraperitoneal test) were also enhanced stereospecifically by (-) naloxone, Mr 2266 and GPA 2163 but some other antagonists (naltrexone, levallorphan, diprenorphine) were inactive probably as a consequence of interfering agonist (antinociceptive) properties. An another antagonist, (-) Win 44441 suggested to bind principally with κ receptors did not enhance either superficial or deep nociception indicating that the former antagonists are probably interfering with endorphins at the level of μ receptors. The motor reaction of mice to a novel environment was stereospecifically depressed by opioid antagonists including (-) Win 44441 suggesting an involvement of endorphins at the level of κ receptors ; Mr 2266 and GPA 2163 were ineffective in this test and hyperalgesic in the two antinociceptive tests ; they might be relatively pure μ antagonists.  相似文献   

16.
Endocrine actions of opioids   总被引:2,自引:0,他引:2  
The widespread occurrence of opioid peptides and their receptors in brain and periphery correlates with a variety of actions elicited by opioid agonists and antagonists on hormone secretion. Opioid actions on pituitary and pancreatic peptides are summarized in Table 1. In rats opioids stimulate ACTH and corticosterone secretion while an inhibition of ACTH and cortisol levels was observed in man. In both species, naloxone, an opiate antagonist, stimulates the release of ACTH suggesting a tonic suppression by endogenous opioids. In rats, a different stimulatory pathway must be assumed through which opiates can stimulate secretion of ACTH. Both types of action are probably mediated within the hypothalamus. LH is decreased by opioid agonists in many adult species while opiate antagonists elicit stimulatory effects, both apparently by modulating LHRH release. A tonic, and in females, a cyclic opioid control appears to participate in the regulation of gonadotropin secretion. Exogenous opiates potently stimulate PRL and GH secretion in many species. Opiate antagonists did not affect PRL or GH levels indicating absence of opioid control under basal conditions, while a decrease of both hormones by antagonists was seen after stimulation in particular situations. In rats, opiate antagonists decreased basal and stress-induced secretion of PRL. Data regarding TSH are quite contradictory. Both inhibitory and stimulatory effects have been described. Oxytocin and vasopressin release were inhibited by opioids at the posterior pituitary level. There is good evidence for an opioid inhibition of suckling-induced oxytocin release. Opioids also seem to play a role in the regulation of vasopressin under some conditions of water balance. The pancreatic hormones insulin and glucagon are elevated by opioids apparently by an action at the islet cells. Somatostatin, on the contrary, was inhibited. An effect of naloxone on pancreatic hormone release was observed after meals which contain opiate active substance. Whether opioids play a physiologic role in glucose homeostasis remains to be elucidated.  相似文献   

17.
Opioid mu-agonist morphine, delta-agonist D-Ala2,D-Leu5-enkephalin (DADL) and kappa-agonist bremazocine locally applied to the surface of turtle visual cortex inhibited the orthodromic evoked potential (EP; fast negative component N1). The lack of cross-desensitization to the inhibitory action of opioids upon EP indicates that the drugs exert their effects via different opioid receptors. Morphine and bremazocine predominantly inhibited the left cortex EP, whereas DADL was a potent inhibitor of the right cortex EP. Thus opioid receptors which modulate evoked electrical activity of the left visual cortex (LVC) apparently belong mostly to mu- and kappa-type while delta-receptors were predominantly responsible for the modulation of electrical activity in the right visual cortex (RVC). Application of LVC- and RVC-extracts to the cortex surface led to EP inhibition, which was partially (60-80%) prevented by antagonist naloxone. LVC-extract proved to be a more potent inhibitor of the left cortex EP, whereas RVC-extract was found to be more effective when applied to the right cortex. It is suggested that not only opioid receptors, but also their endogenous ligands are lateralized in turtle visual cortex.  相似文献   

18.
Endogenous opiates and behavior: 2001   总被引:6,自引:0,他引:6  
Bodnar RJ  Hadjimarkou MM 《Peptides》2002,23(12):2307-2365
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   

19.
Roles of brain and intestinal peptides in the control of food intake may vary among species for specific peptides depending on the degree of complexity of the gastrointestinal tract. Cholecystokinin (CCK) in the brain and intestine is the most widely studied of the peptides involved in the control of feeding. Although CCK released from the intestine may act on peripheral receptors in producing satiety in the pig, a monogastric animal, it has little effect on feeding after peripheral administration in sheep. CCK injected peripherally in chickens decreases food intake, but because of the delay in gastric emptying related to the crop and gizzard, it may be of minor importance. Possible roles for brain CCK have been suggested because CCK injected into the cerebrospinal fluid (CSF) decreases feeding in all three species. In sheep, food intake was stimulated by sequestration of endogenous CCK in CSF with specific CCK antibodies, which suggests a physiological role for brain CCK controlling food intake in this species. Opioid peptides increased feeding in sheep after i.v. and CSF injections. Only peripheral, and not CSF, injections of naloxone, a specific opiate antagonist, decreased feeding and blocked both peripheral and central opioid peptide-stimulated feeding. The balance of CCK and the opioid peptide activity in either the central nervous system or the periphery appears important in the control of feeding, but specific peptide functions and sites of action probably vary among species.  相似文献   

20.
Opioid peptides have been implicated in regulation of feeding in invertebrates. Studies have suggested that receptors for opioids are present in cockroaches and that these receptors play roles in affecting both behaviour and feeding. We examined the effect of µ, δ, and κ opioid receptor agonists and antagonists on feeding, mass changes and activity in the cockroach, Periplaneta americana. The κ antagonist, nor-binaltorphimine, significantly increased food intake, while naltrexone (general antagonist) and naloxonazine (µ antagonist) both reduced feeding. A large mass loss was observed in cockroaches treated with nor-binaltorphimine, despite the increased food intake. Males did not lose as much mass during the 3 h as females, although drug treatment did have some effect on the loss. Time of activity (%) was not influenced by any drug. Water loss experiments suggested that nor-binaltorphimine increased water loss, accounting for the mass loss despite the increased feeding. We suggest that two populations of opioid receptors are present as previously reported, with one affecting feeding and the other involved with evaporative water loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号